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ABSTRACT: Count data, particularly in spatial contexts, often 

exhibits overdispersion and spatial heterogeneity, challenging 

the assumptions of traditional Poisson regression. 

Geographically Weighted Poisson Regression (GWPR) extends 

Poisson regression by accommodating spatial variability in 

regression parameters, but it assumes equidispersion—an 

assumption frequently violated in practice. An alternative, the 

Geographically Weighted Negative Binomial Regression 

(GWNBR), accounts for overdispersion but is computationally 

intensive. This study evaluates the robustness of GWPR under 

varying levels of overdispersion through simulation. Data were 

generated across 49 spatial locations with two explanatory 

variables and three levels of overdispersion: negligible, 

moderate, and severe. Root Mean Square Error (RMSE) was 

used to assess model performance. Results indicate that GWPR 

performs reliably when overdispersion is low to moderate, 

with only a marginal increase in RMSE. However, as 

overdispersion becomes severe, GWPR's accuracy declines 

substantially. The findings suggest that GWPR remains 

appropriate for spatial count data under mild overdispersion  
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but should be replaced by GWNBR in high-overdispersion contexts. 

Keywords: Count data; Overdispersion; Spatial heterogeneity; Geographically 

Weighted Poisson Regression (GWPR); Geographically Weighted Negative Binomial 

Regression (GWNBR); Simulation; Root Mean Square Error (RMSE).  

1. INTRODUCTION 

Count data refers to data obtained through enumeration or counting. Examples 

include the annual number of cases of malnourished children, the number of storm 

events in a given year, or the number of deaths due to lung cancer in a specific year. 

According to Rogers (1974), count data generally follows a binomial, Poisson, or 

negative binomial distribution, depending on the variance-to-mean ratio (VMR). If 

the VMR is less than 1, the data tends to be systematically dispersed, suggesting a 

binomial distribution. If the VMR equals 1, the data tends to be randomly dispersed 

and follows Poisson distribution. If the VMR exceeds 1, the data tends to be 

clustered and follows a negative binomial distribution. 

Agresti (2002) states that one regression model commonly used to describe the 

relationship between a count response variable and explanatory variables is the 

Poisson regression model. This model assumes that the variance equals meaning, a 

condition known as equidispersion. Ignoring this assumption can lead to 

overdispersion, a condition in which the variance exceeds the mean (McCullagh and 

Nelder, 1989). Using the Poisson regression model under overdispersion results in 

underestimated standard errors, which may lead to misleading significance tests and 

potentially incorrect rejections of the null hypothesis. A classical approach to 

handling overdispersion in Poisson-based models involves deriving a distribution 

that combines Poisson and gamma distributions, yielding a form similar to the 

negative binomial distribution. 

Spatial data is observational data that includes not only information about the 

variables of interest but also the coordinates of the locations where the data were 

collected. Regression analysis involving spatial data requires special attention due to 

the potential presence of spatial dependence and spatial heterogeneity. One method 

that can address spatial heterogeneity is Geographically Weighted Regression 
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(GWR). GWR is a point-based linear regression model that provides local parameter 

estimates for each location where data is collected (Fotheringham et al., 2002). While 

GWR is suitable for normally distributed response variables with continuous data, in 

practice, response variables are often counted. 

Nakaya et al. (2005) proposed an extension of GWR for Poisson-distributed count 

data, known as Geographically Weighted Poisson Regression (GWPR). However, 

GWPR often fails to address the issue of overdispersion. An alternative approach for 

modeling overdispersed count data with spatial variation is the Geographically 

Weighted Negative Binomial Regression (GWNBR), as introduced by Da Silva and 

Rodrigues (2013). 

While GWNBR can handle both overdispersion and spatial heterogeneity, it is 

computationally more intensive than GWPR due to the inclusion of additional 

dispersion parameters for each location. Therefore, it is important to assess the extent 

to which GWPR remains appropriate for modeling spatial count data under various 

levels of overdispersion. In this study, a simulation approach is employed to examine 

different levels of overdispersion—ranging from negligible (approaching zero), mild 

(approaching one), to severe (significantly greater than one)—in order to determine 

the threshold at which GWPR can still produce reliable results. 

The objective of this study is to evaluate the level of overdispersion that can still be 

adequately modeled using Geographically Weighted Poisson Regression (GWPR). 

2. LITERATURE  

Geographically Weighted Regression (GWR) is a spatial statistical modeling 

technique used to explore and analyze the relationship between a response variable 

and one or more explanatory variables, while accounting for spatial heterogeneity or 

variation across geographic space (Fotheringham et al., 2002). Unlike traditional 

(global) regression models, which assume that the relationships between variables 

are constant across the study area, GWR allows these relationships to vary locally by 

estimating separate regression parameters at each location. 
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This local modeling approach is particularly useful in spatial data analysis where the 

assumption of spatial stationarity does not hold—that is, when the strength and 

direction of relationships differ from one location to another. 

The general form of the GWR model is: 

 

Where: 

•  is the response variable at location i, 

•   is the value of the k-th explanatory variable at location i, 

•  represents the location-specific regression coefficient for the k-th 

variable at coordinates  

•  is the random error term at location iii, 

• p is the number of explanatory variables. 

The coefficients  are estimated using a weighted least squares method, 

where observations nearer to the location  have greater influence on the local 

parameter estimates than those farther away. This is achieved using a spatial 

weighting function, often based on a kernel function such as Gaussian or bisquare, 

and a bandwidth that determines the spatial extent of the weighting. By providing 

local parameter estimates, GWR helps identify spatial non-stationarity in 

relationships, offering richer insights into spatial patterns and potentially improving 

model accuracy in spatial datasets. 

According to Fotheringham et al. (2002), selecting the appropriate spatial weighting 

in Geographically Weighted Regression (GWR) is essential because it determines 

how much influence nearby locations have on the regression estimates. The spatial 

weights are generated using kernel functions, which define how the influence of 

neighboring observations decreases as distance increases. 

There are several types of kernel functions commonly used in GWR. The Gaussian 

kernel assigns weights using an exponential function of the squared distance 

between locations. The exponential kernel also uses an exponential function but is 
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based on the linear distance. The bisquare kernel gives higher weight to locations 

closer to the target point and assigns zero weight to points beyond a certain distance. 

Similarly, the tricube kernel provides smooth weighting that gradually drops to zero 

outside the defined bandwidth. 

The distance between locations is typically calculated using Euclidean distance based 

on their spatial coordinates. The bandwidth (denoted by h) represents the spatial 

range or window used to determine which nearby points influence the estimation at a 

given location. 

The choice of bandwidth is very important in GWR because it affects the accuracy of 

the local parameter estimates. A smaller bandwidth includes fewer neighboring 

points and captures more local variation, while a larger bandwidth smooths the 

estimates by including more distant observations. 

Nakaya et al. (2005) emphasizes that the optimal bandwidth can be determined 

through a method called cross-validation. This method selects the bandwidth that 

minimizes the prediction error by excluding each observation in turn and comparing 

the predicted value with the actual value. The optimal bandwidth is the one that 

results in the lowest cross-validation score. In summary, spatial weighting and 

bandwidth selection are key components in building a reliable GWR model, as they 

directly influence how spatial relationships are captured in the regression analysis. 

Geographically Weighted Poisson Regression (GWPR) is an extension of the 

Poisson regression model and Geographically Weighted Regression (GWR). 

Therefore, GWPR inherits the same assumption as standard Poisson regression, 

namely that the mean and variance of the response variable are equal 

(equidispersion). However, in practice, this assumption is often violated because the 

variance tends to be greater than the mean, a condition known as overdispersion. 

Applying Poisson regression to overdispersed data can result in underestimated 

standard errors, which in turn affects hypothesis testing by increasing the likelihood 

of incorrectly rejecting the null hypothesis (McCullagh and Nelder, 1989). 

GWPR estimates model parameters locally, meaning that each location where data is 

collected has its own set of parameter estimates (Nakaya et al., 2005). This allows 
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the model to account for spatial heterogeneity and better capture local variations in 

the relationship between the explanatory variables and the response variable. 

Geographically Weighted Negative Binomial Regression (GWNBR) is a 

statistical method suitable for modeling count data that exhibits overdispersion along 

with spatial dependence or variability. The GWNBR model is derived from a 

combination of the Poisson and Gamma distributions, allowing it to account for 

greater variability in the data. According to Da Silva and Rodrigues (2013), this 

model estimates regression coefficients and dispersion parameters that vary locally 

for each geographic location, making it effective in capturing spatial heterogeneity in 

both the mean and dispersion structures of the data. 

3. SIMULATION DATA 

The simulation data generation in this study is an extension of the simulation 

conducted by Liu et al. (2017). The observation locations consist of m×m points, 

with a distance  In this case, m=7 and the sample size n=49 observations. 

The steps for generating the data are as follows: 

1. Determine the coordinates of the locations ), where the observation can be 

expressed as: 

 

for i=1,2,…,m2. where mod(i−1,m) is the remainder of i−1 divided by m, and 

) is the integer value of  

2. Create a dataset with spatial variability, initialized as follows: 

 

3. Generate the explanatory variables X1 and X2, which follow a uniform distribution 

between (0, 100). 

4. Generate the response variable Y according to equation  

 

5. Repeat step 4 for 100 iterations. 
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4. RESULT 

In this simulation, the generated data was designed to resemble the structure of GWR 

data, which is characterized by overdispersion and spatial variability. The simulation 

involved 49 locations, each with longitudinal and latitudinal coordinates. Two 

explanatory variables were used, both generated from a uniform distribution with a 

lower bound of 0 and an upper bound of 1. Although the appropriate model for this 

case is GWNBR, this study utilizes the GWPR model to evaluate its tolerance for 

overdispersion. 

Three overdispersion conditions were considered: approaching zero (ranging from 

1*10-06 to 1*10-42), approaching one (ranging from 1.110 to 2.076), and far from one 

(ranging from 4.610 to 7.450). The computational time for the GWPR model was 

approximately 5 minutes, whereas the GWNBR model required around 1 hour for 

each overdispersion condition. 

RMSE (Root Mean Square Error) was used as a criterion to assess model 

performance. A lower RMSE indicates a better-performing model. Figure 1 shows a 

comparison of the average RMSE for the intercept (beta 0) across the three 

overdispersion conditions for both the GWPR and GWNBR models.For the GWPR 

model, the average RMSE under the condition where overdispersion approaches zero 

was the lowest among all scenarios. The average RMSE values for the conditions 

where overdispersion approached zero and approached one were relatively close, 

with values of 1.348 and 1.398 respectively—a difference of 0.050. In contrast, the 

condition where overdispersion was far from one yielded the highest RMSE of 

1.254. 

In the GWNBR model, the average RMSE across the three overdispersion conditions 

was quite consistent, with values of 3.749, 3.718, and 3.735. Overall, the GWPR 

model demonstrated lower average RMSE values for beta 0 across all three 

conditions when compared to the GWNBR model. 
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Figure 1. Boxplot Comparison of the Average RMSE for Beta 0 

Figure 2 shows a comparison of the average RMSE values for beta 1, which appear 

to be nearly the same under two conditions: when overdispersion approaches zero 

and when it approaches one. Based on the calculations, the average RMSE under the 

condition where overdispersion approaches zero was slightly lower at 1.278, 

compared to 1.285 when overdispersion approached one. Meanwhile, the condition 

where overdispersion was far from one yielded the highest average RMSE value of 

6.341, significantly larger than the other two conditions. 

For the GWNBR model, the average RMSE values across the three overdispersion 

conditions were quite similar, namely 2.144, 2.151, and 2.153. Among these, the 

overdispersion condition approaching zero had the lowest average RMSE, slightly 

lower than that for overdispersion approaching one (2.151) and far from one (2.153). 

Overall, across all conditions, the GWPR model under the overdispersion condition 

far from one resulted in the highest RMSE value for beta 1. When comparing both 

models, the average RMSE for beta 1 in the GWPR model is lower than in the 

GWNBR model under most conditions, except when overdispersion is far from one, 

where GWPR performs worse. 
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Figure 2. Boxplot Comparison of the Average RMSE for Beta 1 

Figure 3 presents the comparison of the average RMSE values for beta 2, which are 

nearly identical under two conditions: when overdispersion approaches zero and 

when it approaches one. Based on the calculations, the average RMSE for the 

overdispersion condition approaching zero is slightly lower at 1.185, compared to 

1.189 for the condition approaching one. The difference between these two 

conditions is minimal, at only 0.004. However, under the conditions where 

overdispersion is far from one, the average RMSE increases significantly to 6.130, 

making it the highest among the three conditions. 

For the GWNBR model, the average RMSE values across the three overdispersion 

conditions are quite similar, with values of 1.859, 1.831, and 1.844. Among the 

GWPR model results, the overdispersion condition, far from once again produces the 

highest RMSE for beta 2 compared to the other conditions. 

Overall, the average RMSE values for beta 2 indicate that the GWPR model 

performs well under conditions where overdispersion is close to zero or one, but its 

performance declines significantly when overdispersion is far from one, unlike the 

GWNBR model which remains more stable across all conditions. 
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Figure 3. Boxplot Comparison of the Average RMSE for Beta 2 

Bias in statistics is also one of the key criteria used to assess model performance. A 

smaller bias value indicates a better-performing model. Figure 4 illustrates a 

comparison of the average bias for the beta 0 parameter under three different 

overdispersion conditions for both the GWPR and GWNBR models. 

For the GWPR model, the average bias values under the conditions where 

overdispersion approaches 1 and where it moves far from 1 are relatively similar. 

According to the calculations, the lowest average bias was found when 

overdispersion approached zero, with a value of 0.698, compared to 1.037 when 

overdispersion approached one. However, when overdispersion moved far from one, 

the bias increased significantly to 4.549, the highest among all conditions. 

In the GWNBR model, the average bias across all three overdispersion conditions 

was relatively stable, with values of 2.525, 2.467, and 2.441. Notably, under the 

condition where overdispersion approached one, the GWPR model exhibited a higher 

average bias compared to its other conditions. 

Overall, the comparison of average bias values for beta 0 shows that the GWPR 

model performs best under conditions of low overdispersion, while the GWNBR 

model demonstrates more consistent performance across varying levels of 

overdispersion. 
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Figure 4. Boxplot Comparison of the Average Bias for Beta 0 

Figure 5 shows the average bias of the beta 1 parameter, which is nearly the same 

under two conditions: when overdispersion approaches zero and when it approaches 

one. Based on the calculations, the average bias under the condition of 

overdispersion approaching zero is slightly smaller, at –0.187, compared to –0.188 

when overdispersion approaches one. Meanwhile, the average bias under the 

condition where overdispersion moves far from one is –6.259, which is the largest (in 

absolute value) among the three conditions. 

The negative values indicate downward bias in the estimation of beta 1. In the 

GWNBR model, the average bias across the three overdispersion conditions is also 

negative, with values of –10.168, –8.626, and –15.812, indicating a more severe 

downward bias. 

Among the conditions for the GWPR model, the largest average biases (in absolute 

terms) appear when overdispersion approaches or moves away from one. Overall, the 

average bias of beta 1 in both the GWPR and GWNBR models reveals that both tend 

to underestimate beta 1, particularly under the condition where overdispersion is far 

from one. 
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Figure 5. Boxplot Comparison of the Average Bias for Beta 1 

Figure 6 presents the average bias of the beta 2 parameter, which is nearly identical 

under two conditions: when overdispersion approaches zero and when it approaches 

one. Under the condition where overdispersion moves far from one, the bias becomes 

negative, with a value of –6.038, which is the largest (in absolute value) among the 

three conditions. 

For the GWNBR model, the average bias under two overdispersion conditions is 

negative, while under the condition where overdispersion moves far from one, the 

bias is positive. The highest average bias in the GWNBR model is observed when 

overdispersion approaches zero. 

In summary, the average bias for beta 2 in both the GWPR and GWNBR models 

varies depending on the overdispersion condition, with the GWPR model showing 

the largest downward bias when overdispersion is far from one, and the GWNBR 

model showing its highest bias when overdispersion is near zero. 
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Figure 6. Boxplot Comparison of the Average Bias for Beta 2 

Overdispersion occurs when the variance exceeds the meaning. One of its effects is 

increasing the likelihood of rejecting the null hypothesis (H₀), or accepting the 

alternative hypothesis (H₁), especially if the data is still modeled using the GWPR 

model. This can lead to an inflated number of significant p-values, which is a sign of 

model inadequacy. 

Table 1. Comparison of the Number and Average of Significant p-values in GWPR and GWNBR Models 

 

 

 

Based on Table 1, the GWPR model shows the smallest number and average of 

significant p-values when overdispersion is near zero, indicating that GWPR is 

appropriate for data with no or minimal overdispersion. 

However, under conditions where overdispersion approaches or moves far from 1, 

the number and average of significant p-values in the GWPR model are much 

higher than those in the GWNBR model. This indicates that GWPR is not suitable 

for modeling data with overdispersion. 

Model

Betha=0 Betha=1 Betha=2 Betha=0 Betha=1 Betha=2 Betha=0 Betha=1 Betha=2

Number RPTG 2624 1776 1214 4888 4323 4251 4887 4327 4255

Number RBNTG 2714 2233 1652 2764 2272 1776 2860 2363 1855

Average RPTG (%) 53.55 36.24 24.77 99.75 88.22 86.75 99.73 88.31 86.84

Average RBNTG (%) 55.39 45.57 33.71 56.41 46.37 36.25 58.37 48.22 37.86

Overdispersion Approaching 0 Overdispersion Approaching 1 Overdispersion Moving Away 
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On the other hand, the GWNBR model yields a smaller number and average of 

significant p-values than GWPR under both moderate and severe overdispersion. 

The difference in counts between GWPR and GWNBR models under these two 

conditions ranges between 1960 and 2479 cases, or approximately 40% to 50.59%, 

highlighting a notable impact of overdispersion in inflating false positives under 

GWPR. 

Interestingly, under the near-zero overdispersion condition, GWNBR actually has a 

larger number and average of significant p-values than GWPR, confirming that 

GWNBR is specifically tailored for data with overdispersion. 

Finally, within the GWNBR model itself, the number and average of significant p-

values under high overdispersion (>>1) are greater than those under moderate 

overdispersion (≈1). This suggests that the GWNBR model is most reliable when 

overdispersion is moderate, i.e., approaching 1. 

5. CONCLUSION 

Based on the simulation data, it can be concluded that the tolerance limit still suitable 

for modeling using GWPR is when the overdispersion is close to 1, within the 

overdispersion range of 1.110 to 2.067. In this condition, the GWPR model provides 

more stable and appropriate results. 

However, as the overdispersion moves further away from 1, within the 

overdispersion range of 4.610 to 7.450, there is a significant increase in the number 

of significant p-values or rejections of H₀. This indicates that the GWPR model 

becomes less suitable for data with higher levels of overdispersion, as the higher the 

overdispersion, the more significant p-values appear, leading to an increased risk of 

Type I errors (false positives). 
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