
Page 1 of 16                                                                 https://www.msidoi.com/dummy123456  

Evaluating the Equidispersion Assumption in Poisson Distributions 

Through Simulation: A Study on Variance Mean Ratio Behavior 

 

Siti Hariati Astuti1, Muhammad Nur Aidi2*, Kusman Sadik2  

 

 

 

 

 

 

 

 

ABSTRACT: This study explores the fundamental assumption of 

equidispersion in Poisson-distributed count data, wherein the 

mean equals the variance. Although the Poisson model is 

widely used for modeling rare events counts in fields such as 

epidemiology, telecommunications, and operations research, its 

assumption of equidispersion is frequently violated in real-

world applications. Using simulated datasets, this research 

investigates the behavior of the Variance Mean Ratio (VMR) 

under different values of the Poisson parameter (λ) and sample 

sizes (n). Simulations were conducted across λ values ranging 

from 1 to 20 and sample sizes of 20, 40, 60, 80, and 100, each 

replicated 100 times. The study evaluates the stability and 

accuracy of the equidispersion property, employing histograms 

and statistical diagnostics to assess distributional 

characteristics. The results offer insights into when Poisson 

distributes adequately models count data and when alternative 

models, such as the negative binomial or zero-inflated models, 

may be required due to overdispersion. This analysis 

contributes to more informed and accurate modeling of 

discrete count data in statistical applications. 
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1. Introduction 

In the field of probability and statistics, a discrete probability distribution refers to 

the probability distribution of a discrete random variable, that is, a variable that can 

only take countable, often finite, values. Common examples include the number of 

customers arriving at a service center, the number of defective items in a batch, or 

the number of heads obtained from a series of coin tosses. 

There are several well-known types of discrete distributions, each with specific 

assumptions and use cases. The binomial distribution, for example, models the 

number of successes in a fixed number of independent Bernoulli trials, each with the 

same probability of success. This distribution is widely used in quality control, 

survey analysis, and experimental research (Walpole et al., 2012) [1]. 

Another important distribution is the Poisson distribution, which describes the 

probability of a given number of events occurring in a fixed interval of time or space. 

This is particularly useful in fields such as traffic flow analysis, call center 

management, and epidemiology, where events occur independently and at a constant 

average rate (Ross, 2014) [2]. 

Geometric distribution is used to model the number of trials required until the first 

success occurs. This distribution is useful in reliability testing and modeling 

processes with repeated independent attempts, such as in simulations and operations 

research (Hogg et al., 2019) [3]. The benefits of using discrete probability 

distributions are significant. They allow researchers, analysts, and decision-makers to 

quantify uncertainty, predict outcomes, and evaluate risk in real-world settings. In 

business contexts, they aid in inventory management, project planning, and service 

optimization. In science and engineering, they are fundamental for designing 

experiments, interpreting data, and validating hypotheses. 
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In essence, discrete probability distributions serve as essential tools in both 

theoretical and applied statistics, offering a structured way to deal with randomness 

and make informed decisions based on quantitative evidence. 

The binomial, negative binomial, and Poisson distributions are all discrete 

probability distributions used to model count data. While they share some 

similarities, they are designed to address different types of random processes, and 

each is characterized by unique assumptions and parameters (Walpole et al., 2012; 

Casella & Berger, 2002) [1,4]. 

The binomial distribution models the number of successes in a fixed number of 

independent Bernoulli trials, each with the same probability of success. It is defined 

by two parameters: the number of trials nnn and the probability of success p. A 

common example is calculating the number of heads obtained when flipping a fair 

coin ten times. The binomial distribution is widely used in fields such as quality 

control, clinical trials, and behavioral sciences where repeated binary outcomes are 

observed (Hogg et.al., 2019) [3]. 

In contrast, the negative binomial distribution models the number of trials (or 

failures) needed to achieve a fixed number of successes. Although it is also based on 

Bernoulli trials, it differs in that it focuses on how many failures occur before the r-th 

success. The negative binomial is essentially the inverse of the binomial distribution: 

while the binomial fixes the number of trials and counts the successes, the negative 

binomial fixes the number of successes and counts the required number of failures or 

trials. Geometric distribution is a special case of the negative binomial distribution 

when r=1. Applications of the negative binomial distribution are common in 

modeling overdispersed count data, such as the number of accidents, insurance 

claims, or hospital visits (Cameron & Trivedi, 2013) [5]. 

The Poisson distribution models the number of times an event occurs in a fixed 

interval of time or space, assuming the events occur independently and at a constant 

average rate λ. It is frequently used in situations involving rare or randomly spaced 

events, such as the number of incoming calls at a call center in an hour or the number 

of decay events from a radioactive source (Ross, 2014) [2]. 
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There is a well-established mathematical relationship between the binomial and 

Poisson distributions: the Poisson distribution arises as a limiting case of the 

binomial distribution when the number of trials n becomes very large, the probability 

of success p becomes very small, and the expected number of successes np remains 

constant. Under these conditions, the Poisson distribution can be used as an 

approximation for the binomial distribution (Wackerly et.al, 2008) [6]. 

Furthermore, the negative binomial distribution is related to the Poisson distribution 

in that it can be considered a generalization that accounts for overdispersion, a 

condition where the variance exceeds the mean. The Poisson distribution assumes 

that the mean and variance are equal, which often does not hold in real-world count 

data. Statistically, the negative binomial can be derived as a Poisson-gamma mixture, 

where the Poisson mean is assumed to follow a gamma distribution. This allows for 

additional flexibility in modeling heterogeneity across observations (Hilbe, 2011) [7]. 

The Poisson distribution is one of the most fundamental and widely used probability 

distributions in the modeling of count data. It is especially valued for its simplicity 

and interpretability, making it the primary choice in many practical applications such 

as modeling the number of customer arrivals, traffic accidents, or disease incidences 

over a given time or space interval. 

The central assumption underlying the Poisson distribution is equidispersion, where 

the mean and variance of the distribution are equal. This property makes the Poisson 

model mathematically convenient and theoretically attractive (Famoye & Singh, 

2006) [8]. However, in real-world data, this assumption is often violated due to the 

presence of overdispersion, a condition where the observed variance exceeds the 

mean (Dewi et al., 2015) [9]. Overdispersion may arise from unobserved 

heterogeneity, excess zeros, or clustering effects, which cannot be adequately 

captured by the standard Poisson model. 

When overdispersion is due to an excessive number of zero counts, the Zero-Inflated 

Poisson (ZIP) model becomes a more appropriate alternative. The ZIP model 

incorporates two processes: one generating structural zeros (e.g., from a separate 

binary process) and the other following a standard Poisson distribution. This dual 



Page 5 of 16                                                                 https://www.msidoi.com/dummy123456  

mechanism provides greater flexibility for fitting data with a higher-than-expected 

frequency of zeros (Lambert, 1992; Ridout et.al., 1998; Mouatassim & Ezzahid, 

2012) [10,11,12]. 

Before applying either the standard Poisson or the ZIP regression models to applied 

data, it is essential to conduct a preliminary examination of the distributional 

assumptions using simulation studies or exploratory data analysis. This step helps to 

deepen the understanding of the underlying characteristics of the count data, 

particularly the presence of overdispersion and zero-inflation. 

In conclusion, Poisson distribution holds a central role in count data modeling due to 

its simplicity and foundational properties, its limitations, particularly the assumption 

of equidispersion—necessitate the use of more flexible models like the negative 

binomial or zero-inflated models when the data exhibit overdispersion. Proper 

diagnosis and model selection are therefore critical to ensure valid inference and 

effective interpretation. 

2. Literature Review 

The Poisson distribution is a discrete probability distribution commonly used to 

model the number of events that occur randomly and independently within a fixed 

interval of time or space (Rao & Toutenburg, 1995) [13]. It is particularly suitable for 

modeling rare events and non-negative count data (Rahayu et al., 2016) [14].  Let 

Yi, for i=1, 2,…,n represent the number of rare events occurring in a fixed period or 

region, with an associated rate parameter λi. The random variable Yi is said to follow 

a Poisson distribution with the probability mass function (Yates & Goodman, 2014) 

[15]. 

 

The defining characteristic of the Poisson distribution is the equidispersion 

assumption, where the mean and variance of the distribution are equal:  

. This property simplifies the model and allows for 



Page 6 of 16                                                                 https://www.msidoi.com/dummy123456  

straightforward interpretation. However, it also becomes a limitation in many real-

world datasets. 

In practice, the assumption of equidispersion is often violated, particularly in count 

data. There are two types of dispersion that may occur (Hilbe, 2011) [7]. 

• Overdispersion: Variance exceeds the mean. 

• Underdispersion: Variance is less than the mean. 

To assess this, the Variance Mean Ratio (VMR)—also called the index of 

dispersion—is calculated as follows: 

 

If D=1, the data is equidispersed (random, typical of the Poisson distribution). If 

D>1, the data is overdispersed (greater variability than Poisson). But If D<1, the data 

is underdispersed (less variability). 

According to Aidi (2013) [16], a VMR value further from 1 suggests a departure from 

randomness, indicating a more structured or patterned distribution of counts. 

To statistically verify whether a dataset is overdispersed, one can use a Chi-squared 

test based on Fisher’s index of dispersion (Potthoff & Whittinghill, 1966) [17]. The 

test statistic is defined as: .  where: n is the number of observations, D 

is the VMR, Under the null hypothesis H0, the data follows a Poisson distribution 

(i.e., D=1).  The test statistic follows a Chi-squared distribution with n−1 degrees of 

freedom. If:  then the null hypothesis is rejected, suggesting the presence 

of overdispersion and a violation of the equidispersion assumption. 

3. Data and Method 

3.1. Data 

The data used in this study consists of simulated data. The simulated data is used to 

support theoretical analysis and to examine the characteristics of the data.  The 

Poisson distribution has a single parameter, λ, and a sample size n. Accordingly, the 
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simulated data is generated based on various values of the Poisson parameter λ and 

different sample sizes n In this study, the values of λ range from 1 to 20, and the 

sample sizes considered are n=20,40,60,80 and 100. Each combination of λ and n is 

replicated 100 times. 

The simulated dataset includes only one response variable, Y, which follows a 

Poisson distribution. The response variable Y is generated using the R statistical 

software (version 3.4.2). Based on the characteristics required for the study, a total of 

100 simulation scenarios are used in the analysis. 

3.2. Simulation Method 

The research method applied in the simulation study for each combination of 

λ\lambdaλ and nnn follows the steps below: 

1. Generate the response variable Y, which follows a Poisson distribution, using the 

predetermined combinations of λ and sample size n. 

2. Explore the generated Y data using histograms to examine the distribution 

characteristics based on the variation in lambda (λ) and sample size (n). 

3. Calculate the Variance Mean Ratio (VMR) for each simulated dataset. 

4. Explore the behavior of VMR values across different sample sizes (n) and lambda 

values (λ). 

5. Perform descriptive analysis of the VMR values using boxplots. 

6. Conduct statistical testing of VMR values using the Chi-square test to assess the 

stability of the distribution. 
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4. Result and Discussion 

4.1. Figures 1,2,3 

Figure 1 Histogram of the Y variable at n = 20 

This Figure 1 presents histograms of simulated data from a Poisson distribution with 

four different values of the rate parameter λ: 1, 5, 13, and 20. As seen in the first 

panel (Lambda = 1), the distribution is highly skewed to the right, with most of the 

data concentrated around 0 and 1, which is typical for small λ values. In the second 

panel (Lambda = 5), the distribution begins to spread out and becomes less skewed, 

showing a clearer central tendency around 5. The third panel (Lambda = 13) displays 

a distribution that appears approximately symmetric and bell-shaped, indicating that 

the Poisson distribution is approaching the shape of a normal distribution. In the 

fourth panel (Lambda = 20), the distribution becomes even more symmetric with a 

broader spread, further confirming the approximation of the Poisson distribution to 

the normal distribution as λ increases. The vertical dashed lines in each panel 

represent the mean of the distribution, which increases proportionally with λ, as 

expected. These patterns align with theoretical expectations described by Ross 

(2014) [2] and Casella & Berger (2002) [4], who state that the Poisson distribution 

tends toward a normal distribution when λ is sufficiently large (λ>10). 
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Figure 2 Histogram of the Y variable at n = 60 

Figure 2 illustrates a series of histograms displaying the distribution of Poisson-

distributed random variables (Y) generated for different values of the rate parameter 

λ, specifically λ=1,5,13, and 20, with a relatively large sample size. Each panel in the 

figure corresponds to one of these lambda values and represents the frequency 

distribution of the simulated events (Y). 

• For λ=1: The histogram shows a highly right-skewed distribution, where the 

majority of observed events are concentrated at the lower end of the scale, 

primarily around 0 and 1. This is characteristic of a Poisson distribution with a low-

rate parameter, where the probability of multiple events occurring is very low. The 

mean, indicated by the vertical dashed line, is close to 1, aligning with theoretical 

expectations. 

• For λ=5: The distribution begins to spread out and exhibit reduced skewness. The 

frequency of events is more symmetrically distributed around the mean of 5. While 

still exhibiting the discrete nature of the Poisson distribution, the shape becomes 

more balanced, indicating an increased probability of moderate event counts. 

• For λ=13: The histogram appears nearly symmetric and bell-shaped. The data are 

centered around the mean of 13 with less skewness. This reflects the effect of the 
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Central Limit Theorem, which states that as λ increases, the Poisson distribution 

approximates a normal distribution (Johnson et al., 2005) [18]. 

• For λ=20: The distribution shows clear symmetry and a wider spread. The data are 

clustered around the mean of 20, and the shape closely resembles a normal 

distribution. This is consistent with the theoretical property of the Poisson 

distribution converging to normality as λ becomes large (Ross, 2014) [2]. 

The histograms effectively demonstrate the transformation of the Poisson 

distribution's shape as the rate parameter λ increases. For small λ, the distribution is 

highly skewed and tightly clustered, indicating that events are rare. As λ increases, 

the distribution becomes more symmetric and bell-shaped, aligning more closely 

with the normal distribution. This trend is supported by statistical theory, particularly 

the Central Limit Theorem, which suggests that for sufficiently large λ, the Poisson 

distribution can be approximated by a normal distribution with mean μ=λ and 

variance σ2=λ (Johnson et al., 2005; Ross, 2014) [18,2]. 

These observations are critical in practical statistical modeling and hypothesis 

testing, where normal approximation is often used for Poisson-distributed data when 

λ≥10 simplifying analysis and inference. 

Figure 3 Histogram of the Y variable at n = 100 
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Figure 3 illustrates the histograms of Poisson-distributed data generated with varying 

mean parameters λ set to 1, 5, 13, and 20, using a larger sample size. Each panel 

displays the frequency distribution of the number of occurrences (Y) on the x-axis 

and their observed frequency on the y-axis. Two vertical dashed lines in each plot 

represent the theoretical meaning (equal to λ) and the empirical (sample) mean. This 

visualization helps demonstrate the relationship between the rate parameter and the 

shape of the Poisson distribution. 

For λ=1, the distribution is sharply right skewed with most of the observations 

clustered at Y=0 and Y=1, and very few events at higher values. This is typical for 

Poisson distributions with small mean values, where the likelihood of many events 

occurring is extremely low. 

At λ=5, the distribution becomes more spread out and less skewed, with a noticeable 

central tendency around Y=5. The increased λ allows more room for variation, 

resulting in a wider range of observed events counts, although the distribution 

remains moderately asymmetric. 

When λ=13, the histogram reveals a nearly symmetric, bell-shaped distribution 

centered around the mean. This reflects the convergence of the Poisson distribution 

towards a normal distribution as λ increases, consistent with the Central Limit 

Theorem. 

Finally, for λ=20, the distribution exhibits clear symmetry and approximates the 

shape of a normal distribution. The frequencies are centered around the mean, and 

the tails are more balanced. This pattern confirms that for large λ values, the Poisson 

distribution can be well-approximated by the normal distribution, which is often used 

in practice for inference when λ is sufficiently high. 

4.2. Table 1 

Table 1 presents below the calculated Chi-Square (χ2) test statistics for various 

combinations of Poisson distribution parameters—specifically, different values of 

the Poisson parameter λ (ranging from 1 to 20) and different sample sizes n (20, 40, 



Page 12 of 16                                                                 https://www.msidoi.com/dummy123456  

60, 80, and 100). The goal is to test whether the data exhibit overdispersion or 

equidispersion, a key assumption in the Poisson model. 

How to interpret the table: 

• For each λ and n, the test statistic is calculated as χ2=(n−1)×VMR. 

• The critical value of the Chi-square distribution at significance level α=0.05 given 

at the bottom row for each sample size (df = n−1). 

• If the calculated χ2 value exceeds the critical value, the result is statistically 

significant, indicating overdispersion—the variance is larger than the mean, 

violating Poisson assumptions. 

Key Observations from the Table: 

1. None of the χ2 values exceed the critical values for any combination of λ and n. 

o This suggests that none of the simulations show statistically significant 

overdispersion at the 5% level. 

o Hence, the assumption of equidispersion (i.e., Var(Y)=E(Y) holds across 

all tested scenarios. 

2. The test statistic values increase roughly in proportion to sample size n, which 

aligns with the theoretical calculation χ2=(n−1)×D, where D is the variance-mean 

ratio. 

3. Across values of λ, the differences in test statistics are relatively minor, showing 

that dispersion is more influenced by sample size than by the Poisson parameter 

in this simulation. 
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Table 1 – Chi-Square Statistics for VMR 

 

lambda (𝜆) 

 Number of sample (𝑛)  

20 40 60 80 100 

1 19,752 39,748 59,718 79,209 99,470 

2 19,401 39,763 58,719 80,568 100,573 

3 19,386 40,602 59,081 79,598 98,898 

4 18,156 38,317 59,937 78,401 99,433 

5 18,421 39,610 58,043 79,241 99,164 

6 18,261 39,558 59,731 79,385 99,290 

7 18,872 37,489 59,181 79,536 97,557 

8 19,053 40,281 58,762 80,355 99,442 

9 18,062 39,536 58,753 78,977 99,295 

10 19,000 38,292 57,798 76,553 96,538 

11 17,884 37,837 58,676 79,945 99,381 

12 17,996 39,651 59,451 79,377 97,720 

13 19,294 39,073 58,701 80,512 98,249 

14 18,927 38,439 59,149 78,845 97,977 

15 18,628 38,441 56,402 77,991 101,047 

16 17,662 40,041 59,495 77,668 99,000 

17 18,250 40,288 58,686 79,234 102,350 

18 19,619 39,774 59,367 79,216 100,393 

19 18,925 39,456 57,480 79,825 98,943 

20 19,352 38,274 59,760 80,248 97,169 

Chisquare Table with  30,144 54,572 77,931 100,749 123,225 

The results in Table 1 display the Chi-square test statistics computed from the 

Variance Mean Ratio (VMR) for simulated Poisson data across a range of 

parameter values (λ=1 to λ=20) and sample sizes (n=20,40,60,80,100). The primary 

aim is to test for overdispersion—a condition where the variance of the response 

variable exceeds the mean, violating one of the fundamental assumptions of the 

Poisson distribution. 

1. No Evidence of Overdispersion 

Across all combinations of λ and n, the test statistics fall below the critical values of 

the Chi-square distribution at α=0.05. This indicates no significant overdispersion 

in any scenario. These results are consistent with theoretical expectations because the 

data were generated from a true Poisson process where variance equals the meaning 

(Var(Y)=E(Y)). 
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This supports previous findings in the literature: 

• Hilbe (2011) [7] notes that Poisson-distributed data should exhibit equidispersion 

when the model is correctly specified. 

• Rao and Toutenburg (1995) [13] emphasize that VMR values near 1 and 

insignificant Chi-square results suggest a good fit for the Poisson distribution. 

2. Influence of Sample Size 

The Chi-square test statistics naturally increase with the sample size due to the 

formula: 

χ2=(n−1) × VMR. However, because the VMR values remain close to 1 in all 

simulations, the resulting statistics increase linearly with n but still remain well 

below the critical values. This confirms that increasing sample size does not 

artificially lead to the detection of overdispersion in Poisson-distributed data—unless 

actual overdispersion is present. 

3. Effect of Lambda (λ) 

The variation in test statistics across different λ values appears minor and random, 

which aligns with theoretical expectations. Since the mean and variance of the 

Poisson distribution are both equal to λ, changing λ should not, by itself, introduce 

overdispersion. The consistency of test results across λ values reinforces the 

robustness of the Poisson assumption under the simulated conditions. 

4. Implications for Applied Modeling 

These results provide a useful baseline for comparing empirical data. In practice, if 

VMR values from real data yield Chi-square statistics that exceed the critical value, 

researchers may consider alternatives such as: 

• The Negative Binomial model (for count data with overdispersion), 

• Quasi-Poisson models, or 

• The use of robust standard errors to adjust for mild violations of equidispersion. 
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This aligns with the recommendations of Cameron and Trivedi (2013) [5], who 

emphasize model diagnostics as a crucial step before interpreting Poisson regression 

outputs. 

5. Conclusion 

The simulation study demonstrates how the shape of the Poisson distribution evolves 

with increasing values of the rate parameter λ and larger sample sizes. Histograms 

from Figures 1 to 3 clearly show that at low λ (e.g., λ = 1), the distribution is heavily 

right skewed, but as λ increases (λ ≥ 13), the distribution becomes increasingly 

symmetric and approaches the shape of a normal distribution. This convergence is 

more evident with larger sample sizes (n = 60 and n = 100), supporting the 

application of the Central Limit Theorem to the Poisson distribution when λ is 

sufficiently large (λ ≥ 10). 

Additionally, the Chi-square test results in Table 1 confirm that for all combinations 

of λ and sample sizes, the calculated test statistics remain below the critical values at 

a 5% significance level. This provides strong evidence that the assumption of 

equidispersion holds in the simulated datasets, e.e., the variance of the data is not 

significantly greater than the mean. Therefore, no signs of overdispersion were 

detected in any scenario. 

Overall, these findings validate key theoretical properties of the Poisson distribution, 

including its normal approximation for large λ and the stability of its equidispersion 

property across a broad range of conditions. 
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