
Page 1 of 18                                                                  https://www.msidoi.com/dummy123456  

DIFFERENTIATION OF PINE STAND AGE CLASSES THROUGH 

DISCRIMINANT ANALYSIS 

 

Muhammad Nur Aidi1* 

 

 

 

 

 

 

 

 

ABSTRACT: Indonesia's forest ecosystems are essential for both 

ecological stability and economic productivity. Effective forest 

management relies on accurate data, with stand tables serving 

as key tools for understanding forest structure. Traditionally 

derived from field measurements, stand tables can now be 

developed using remote sensing data, including aerial 

photographs. This study explores the potential of photographic 

variables to distinguish forest age classes in pine plantations 

managed by Perum Perhutani. Using 40 observations of aerial 

imagery interpreted for qualitative and quantitative variables, 

non-hierarchical cluster analysis was applied to group forest 

stands into six age classes. Discriminate analysis was then 

conducted to identify significant variables and develop 

classification functions. The results show that quantitative 

variables—such as crown cover, crown diameter, and tree 

height—significantly differentiate forest age classes, while 

qualitative variables like tone and topography were less 

effective. The first two discriminant functions explained 98.5% 

of the variance, confirming their strong discriminatory power. 

This approach demonstrates that aerial photographic variables, 

particularly quantitative ones, offer a promising alternative for  
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forest age classification, enabling more efficient and large-scale forest inventory and 

planning.  

Keywords: Forest inventory; aerial photography; stand tables; cluster analysis; 

discriminant analysis; forest age classification; remote sensing; pine plantations; 

Perum Perhutani; quantitative variables. 

1. INTRODUCTION 

Indonesia's forest resources are a vital component of the nation’s natural wealth, 

playing a crucial role not only in generating national revenue but also in maintaining 

environmental balance. To ensure that forests continue to fulfill both their ecological 

and economic functions, sustainable and efficient management practices are 

essential. A fundamental requirement for such management is the availability of 

reliable data and information on forest resources, which is primarily obtained 

through forest inventory activities. 

Among the standard tools used in forest inventory are tree volume tables and stand 

tables. Stand tables are particularly valuable because they provide detailed insights 

into the distribution of trees across diameter classes within a forest stand. These 

tables not only reflect the current structure of the stand but also serve as a basis for 

predicting future growth, mortality, and potential timber yield. Traditionally, stand 

tables are constructed using terrestrial measurements taken directly in the field, such 

as tree height, diameter, and basal area density. 

However, recent advancements in remote sensing technology, especially aerial 

photography, have opened new opportunities for developing photographic stand 

tables. These methods are particularly advantageous in remote or inaccessible forest 

areas. Variables extracted from aerial images, including crown diameter, canopy 

density, texture, and spectral reflectance, can serve as proxies for field measurements 

and are increasingly used to estimate forest age, biomass, and structural parameters 

(Wulder et al., 20041; Lu et al., 20162). Despite their promise, the application of 

photographic variables in stand table construction is still limited and largely 

experimental, raising important questions about their accuracy and effectiveness. 

To assess the potential of photographic variables, preliminary studies are necessary. 

One such study focuses on evaluating whether variables derived from aerial 
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photographs can effectively distinguish between forest stand age classes using 

discriminant analysis. This is particularly relevant in plantation forests managed by 

Perum Perhutani—Indonesia’s state-owned forestry company—where forest areas 

are typically categorized into 5-year age classes to reflect the interval from planting 

to harvesting. 

The differentiation of age classes using aerial photographic data can be significantly 

improved by applying multivariate statistical methods, notably discriminant 

analysis and cluster analysis. Discriminate analysis is a supervised classification 

technique designed to distinguish predefined groups based on predictor variables. In 

forestry, it has gained wide use for classifying forest types, age classes, and structural 

conditions using both ground-based and remote sensing data (Cohen et al., 19953; 

Hudak et al., 20084). It identifies the optimal combination of variables that best 

separates different groups, making it particularly suitable for validating the 

discriminative power of aerial-derived indicators. 

In parallel, cluster analysis—an unsupervised learning method—can be used to 

identify natural groupings within the data. Techniques such as K-means clustering 

are effective in grouping forest stands based on characteristics extracted from aerial 

imagery (Jin & Sader, 20055). This method is useful during the exploratory phase of 

research and helps guide subsequent supervised classification. 

Differentiating forest age classes is critical for effective forest management, as it 

supports the planning of harvesting rotations, monitoring of forest development, and 

estimation of ecosystem services such as carbon sequestration. Stratifying forests by 

age allows managers to allocate resources more efficiently and implement targeted 

strategies for conservation or timber production (FAO, 20126). 

Based on the above understanding, this paper aims to: 

1. Group forest age classes from aerial photographs using non-hierarchical cluster 

analysis based on photographic variables. 

2. Identify the aerial photographic variables that play significant roles in 

differentiating forest age classes through the discriminant analysis approach. 
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2. THEORETICAL REVIEW 

2.1. Variables and Elements of Aerial Photo Interpretation 

Aerial photographs, as a product of remote sensing technology, play a crucial role in 

forest resource inventory activities. Through aerial imagery, valuable information can 

be extracted, including topography, vegetation types, spatial location, land area, and 

forest potential. The three-dimensional depiction presented in aerial photography is 

particularly advantageous, as it allows for a clearer representation of terrain and site 

models, especially due to vertical exaggeration, and facilitates the creation of contour 

maps (Sutanto, 19867). 

Key variables used in interpreting aerial photographs include tree height, crown 

diameter, and crown cover percentage. Moreover, visual interpretation relies on 

several elements such as tone, shape, texture, topography, pattern, size, shadow, and 

site (Lillesand & Kiefer, 19908; Campbell & Wynne, 20119). These interpretation 

cues help analysts derive meaningful ecological and geographical information from 

aerial imagery, enhancing land-cover classification and resource assessment. 

2.2. Cluster Analysis 

According to Johnson and Wichern (2002)10, cluster analysis is a statistical technique 

used to group observations or objects into clusters in such a way that objects within 

the same group are more similar to each other than to those in other groups. 

Similarity or dissimilarity is typically measured using specific indices such as 

Euclidean distance, probability-based indices, or other dissimilarity metrics. This 

process, also known as classification, often faces challenges in selecting appropriate 

criteria, as different classification rules may yield divergent outcomes depending on 

the nature of the observations and classification objectives (Kaufman & Rousseeuw, 

2005)11. 

Clustering techniques are broadly categorized into graphical methods, hierarchical 

techniques, and non-hierarchical (partitioning) methods. Graphical methods include 

profile plots, Andrews plots, and modified Andrews plots. Hierarchical techniques 

use distance-based dissimilarity measures and include methods such as single 

linkage, complete linkage, centroid linkage, median linkage, and average linkage. In 
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contrast, non-hierarchical techniques such as k-means clustering partition data into a 

pre-specified number of groups (Hair et al., 2010)12. 

Common distance metrics used to assess similarity and dissimilarity include: 

• Euclidean Distance 

• Manhattan or City-block Distance (Minkowski Distance) 

• Mahalanobis Distance, which accounts for variable correlations and scale 

differences (Johnson & Wichern, 2002)10. 

2.3. Discriminant Analysis 

Discriminant analysis is a statistical methodology used for describing and classifying 

individuals based on measured variables (Lebart, 1984)13. As Everitt and Dunn 

(1990)14 explain, discriminant analysis is particularly relevant when there are two 

types of multivariate observations: (1) a training sample with known group 

memberships (a priori groups), and (2) a test sample where group membership is 

unknown and must be predicted. 

The objectives of discriminant analysis include: 

1. Determining statistically significant differences in means between known groups. 

2. Establishing procedures for classifying statistical units (individuals or objects) into 

groups based on variable values. 

3. Identifying the variables that contribute most to group separation (Hair et al., 

2010)12. 

Common techniques include the Fisher Linear Discriminant Function, Logistic 

Discriminant Analysis, Nearest Neighbor Rules, Classification Trees, Kernel 

Methods, and Minimum Mahalanobis Distance Classifier (Everitt & Dunn, 

199014; Johnson & Wichern, 2002)10. Many of these approaches rely on F-tests and 

require careful attention to underlying assumptions and outliers (Karson, 198215). 

While discriminant analysis generally utilizes quantitative variables, categorical 

predictors can also be incorporated as discriminators (Johnson & Wichern, 2002)10. 

Rusolono (1995)16 noted that ordination through discriminant analysis can provide 
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clear grouping and separation of sampling units based on species composition and 

density within different land systems. 

2.3.1. Linear Discriminant Function 

Supranto (2004)17 describes the linear discriminant function as a linear combination 

of predictor variables represented by the equation: 

ikkiii XbXbXbbD ++++= ...22110  

Where: 

• iD  is the discriminant score for the i-th object, 

• ikX  is the k-th variable for the i-th object, 

• kb  is the discriminant coefficient for the k-th variable. 

When the covariance matrices of k populations are equal and misclassification costs 

are uniform, the classification rule simplifies to a squared distance function: 
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An object x is classified into the population 

with the smallest discriminant distance. If µb t = 1, 2, ..., k and Σ are unknown, they 

are estimated by their sample counterparts x  and S (Johnson & Wichern, 2002)10. 

This yields a modified version of Fisher’s discriminant function accommodating 

prior probabilities. Posterior probabilities guide the final classification decision, 

under the constraint that all posterior probabilities sum to one. 

2.3.2. Error Rate Estimation 

To evaluate classification accuracy in discriminant analysis, error rate estimation is 

essential. Johnson and Wichern (2002)10 suggest splitting the dataset into two parts: a 

training set to derive the classification rule and a test set to evaluate its 

performance. The probability of misclassifying observations from population s into 

population t, denoted P(t∣s), helps calculate the misclassification rate: 


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The overall error rate for all populations is then defined as the weighted average of 

individual error rates. When sample sizes are limited, cross-validation (or leave-one-
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out validation) provides an alternative estimate by iteratively omitting one 

observation, fitting the model, and evaluating performance. However, this method 

may be sensitive to outliers. Posterior probability-based error estimates can also be 

used, whereby the posterior probability for the true population reflects the likelihood 

of correct classification. In linear discriminant analysis, observation xxx is classified 

into population Πt if:    

This simplifies to linear conditions involving the discriminant function coefficients, 

and classification is made into the group with the highest discriminant score. 

2.3.3. Quadratic Discriminant Function 

If the assumption of equal covariance matrices across groups does not hold, 

quadratic discriminant analysis (QDA) is more appropriate. Here, the 

classification rule depends on the distinct covariance matrices Σj of each group. The 

squared Mahalanobis distance becomes: 

)(2||)()'()( 12

tjjjj InsInxxsxxxd −+−−= − ; j = 1, 2, ..., k . The object is 

assigned to the group with the smallest distance. Although the posterior probability 

formula remains the same as in LDA, the discriminant function is now quadratic. 

2.3.4. Variable Selection in Discriminant Analysis 

A common issue in discriminant analysis involves determining the optimal number 

of variables that effectively explain group classification. This problem arises from 

multicollinearity or redundancy among predictor variables. Selecting an appropriate 

subset of variables is critical for model interpretability and performance. Stepwise 

selection techniques or principal component analysis can be employed to address this 

(Hair et al., 2010)12. 

3. METHOD 

3.1. Data 

The data used in this study were obtained from the interpretation and measurement of 

aerial photographs across various age classes. The variables include tone (X1), shape 

(X2), texture (X3), topography (X4), and pattern (X5), as well as percentage of 

crown cover (X6), crown diameter (X7), and tree height (X8) in pine stands located 
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in the North Bandung Forest Management Unit (KPH Bandung Utara), West Java. 

These data were obtained from a study conducted by Adi (1998)18. 

The variables used in this research are as follows: 

• Tone (expressed on a scale from 1 to 3, representing light gray, gray, and dark 

gray), 

• Shape (expressed on a scale from 1 to 3, representing somewhat regular, regular, 

and irregular), 

• Texture (expressed on a scale from 1 to 3, representing somewhat coarse, coarse, 

and fine), 

• Topography (expressed on a scale from 1 to 3, representing flat, moderate, and 

steep), 

• Pattern (expressed on a scale from 1 to 3, representing irregular, somewhat regular, 

and regular), 

• C (crown cover percentage), 

• D (crown diameter in meters), and 

• H (tree height in meters). 

These variables can be grouped into two categories: qualitative variables (tone, 

shape, texture, topography, and pattern) and quantitative variables (crown cover 

percentage, crown diameter, and tree height). 

3.2. Data Analysis 

The data analysis involved non-hierarchical cluster analysis using 40 different 

observations, combined with additional information on six age classes to determine 

which observations belong to each age class. Based on the observations within each 

age class, discriminant analysis was then conducted to derive discriminant functions 

for each age class. The reliability of the discriminant functions was tested through 

validation using 10 additional observations not included in the function development 

process. 

The estimation of classification error rates was used to assess the reliability of the 

discriminant functions, by determining the rate of misclassification based on the 10 
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validation observations. An object is classified into a particular age class if it has the 

highest discriminant score (Johnson and Wichern, 2002)10. 

4. RESULTS AND DISCUSSION 

4.1. Cluster Analysis Results 

Based on the non-hierarchical cluster analysis using SPSS and assuming 6 clusters 

(representing age classes), a complete classification was obtained as shown in 

Appendix 1, while a summary of clusters and their members is presented in Table 1. 

Table 1. Number of members in each cluster (age class) 

No. Cluster Members Total 

1 1, 2, 3, 4, 5 5 

2 23, 24, 25, 38, 39, 47 6 

3 20, 21 2 

4 6, 7, 9, 11, 12, 13, 14, 17, 22, 27, 28, 30, 41, 42, 44, 45 16 

5 8, 32, 33, 34, 35, 36, 37, 48 8 

6 10, 15, 16, 18, 19, 26, 29, 31, 40, 43, 46, 49, 50 13 

 

The choice of 6 clusters is consistent with the initial assumption based on the 

primary research data, which categorizes observation samples into six age classes. 

Therefore, each resulting cluster is interpreted as representing a specific age class. 

The classification results in Table 1 differ from the initial classification derived from 

visual interpretation of aerial imagery. This discrepancy is likely due to the differing 

classification approaches. The original classification was qualitative and based on 

subjective interpretation of aerial photographs, while the non-hierarchical clustering 

approach applies objective mathematical analysis of variables extracted from the 

images. For subsequent analysis, the classification obtained via non-hierarchical 

cluster analysis was used. 

4.2. Discriminant Analysis and Variable Testing 

Before performing discriminant analysis, the classified data were split into two parts: 

40 samples for constructing the discriminant function and 10 samples for validation, 

selected randomly.  The discriminant analysis identifies which variables significantly 

differentiate clusters, as shown in Table 2 using Wilks’ Lambda test. 
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Table 2. Wilks' Lambda test for equality of cluster means 

Variable Wilks’ Lambda F p-value 

Tone 0.746 2.312 0.065 

Shape 0.520 6.287 0.000 

Texture 0.685 3.127 0.020 

Pattern 0.855 1.154 0.352 

Topography 0.876 0.962 0.455 

C 0.035 189.147 0.000 

D 0.223 23.675 0.000 

H 0.195 28.038 0.000 
 

From Table 2, it is evident that almost all variables can significantly differentiate 

between clusters at the 5% significance level, except for tone, pattern, and 

topography. These variables are qualitative and rely heavily on the subjective skills 

of the interpreter. In contrast, the quantitative variables show stronger discriminative 

power, as reflected by higher F-values and lower Wilks’ Lambda values. This 

supports previous research that shows quantitative metrics derived from remote 

sensing data (e.g., spectral, structural, or textural indices) often yield more objective 

classification results than purely visual interpretations (Lillesand et al., 201519; 

Jensen, 201620). 

4.3. Discriminant Function Performance 

Table 3 presents the percentage of variance explained by each discriminant function. 

Table 3. Variance explained by discriminant functions 

Function Eigenvalue % Variance Cumulative % 

1 59.482 91.4 91.4 

2 4.601 7.1 98.5 

3 0.583 0.9 99.4 

4 0.296 0.5 99.9 

5 0.129 0.2 100.0 

    

The first two functions explain 98.5% of the total variance, indicating that most of 

the cluster separability can be attributed to these two functions. This is consistent 

with Fisher's Linear Discriminant principle, which seeks to maximize between-group 

variance relative to within-group variance (Klecka, 198021). 
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4.4. Discriminant Function Formulas 

The derived discriminant functions for each age class cluster using Minitab software 

are shown in Table 4. 

Table 4. Discriminant functions based on aerial image variables 

Labeling Discriminant Function 

1 -69.77 + 15 X1 + 23.93 X2 – 2.04 X3 + 15.15 X4 + 22.52 X5 + 1.36 X6 + 6.31 

X7 – 1.26 X8 

2 -389.79 + 30.21 X1 + 65.22 X2 – 16.26 X3 + 30.77 X4 + 48.84 X5 + 4.75 X6 + 

21.17 X7 – 2.57 X8 

3 -316.49 + 22.33 X1 + 65.31 X2 – 14.29 X3 + 26.80 X4 + 46.22 X5 + 4.53 X6 + 

19.14 X7 – 3.65 X8 

4 -543.12 + 30.05 X1 + 72.91 X2 – 17.14 X3 + 31.85 X4 + 55.09 X5 + 6.66 X6 + 

24.31 X7 – 4.32 X8 

5 -552.70 + 30.74 X1 + 74.84 X2 – 18.49 X3 + 32.30 X4 + 55.13 X5 + 6.51 X6 + 

25.88 X7 – 3.93 X8 

6 -431.51 + 26.27 X1 + 71. 52 X2 – 17.62 X3 + 30.68 X4 + 50.73 X5 +5.58 X6 + 

22.70 X7 – 3.65 X8 

(Note: X1 to X8 represent the respective aerial photo variables such as tone, shape, 

texture, etc.) (Refer to the original table for formulas.) 

These functions allow the assignment of new observations to specific clusters based 

on discriminant scores, where the highest score determines cluster membership. 

4.5. Validation and Cross-Validation Results 

To test the reliability of the discriminant functions, a validation was performed using 

10 samples. All were correctly classified, indicating 100% classification accuracy 

(Table 5). 

Table 5. Discriminant function testing 

Labe

l X X X X X X X X 
Clasif

i 

cation 

Discriminant Score (Di) 

  1 2 3 4 5 6 7 8 1 2 3 4 5 6 

1 2 1 1 2 3 0 0 0 1 80 -72 -29 

-

19

8 

-

20

5 

-

11

2 

2 3 3 3 3 3 

4

0 8.45 

29.3

9 2 

22

5 

38

0 

35

8 

32

0 

33

4 

36

1 

4 3 2 1 2 2 

9

5 4.29 

13.1

3 4 

23

6 

48

3 

47

8 

53

0 

52

3 

51

5 

4 3 3 3 2 3 

8

5 3.6 

16.5

6 4 

25

6 

49

3 

48

9 

52

5 

52

0 

51

8 

4 3 3 3 1 3 9 3 18.2 4 24 47 46 50 49 49
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0 2 0 8 5 8 6 

5 2 3 4 1 3 

9

0 

10.7

2 

32.1

6 5 

25

6 

55

1 

52

8 

58

5 

59

4 

57

6 

5 3 3 4 2 2 

8

0 8.69 

28.6

5 5 

24

2 

48

1 

46

0 

49

1 

49

8 

49

4 

6 2 3 4 3 3 

6

0 7.41 

19.3

6 6 

24

1 

43

2 

42

9 

42

4 

42

8 

44

2 

6 3 3 3 1 3 

6

5 5.91 

16.7

8 6 

22

8 

41

6 

41

5 

41

6 

41

6 

42

8 

6 3 3 4 1 3 

6

5 5.34 

22.3

3 6 

21

5 

37

3 

37

0 

36

1 

36

1 

37

7 

 

Table 6. Cross-validation results (selected view) 

Original 

Class 

Observations Classification by Function 

  1 2 3 4 5 6 

1 4 4 

(100%) 

0 0 0 0 0 

2 5  0 5 

(100%) 

0 0 0 0 

3 2 0 0 2 

(100%) 

0 0 0 

4 13 0 0 0 12 

(92,3%) 

1 

(7,7%) 

0 

5 6 0 0 0 0 6 

(100%) 

0 

6 10 0 1 

(10%) 

0 1 

(10%) 

1 

(10%) 

7 

(70%) 

Cross-validation, a more stringent method especially with smaller sample sizes, 

showed an overall misclassification rate of 10%. The highest misclassification was 

observed in Cluster 6, possibly due to internal variability within this group or overlap 

in variable characteristics with other clusters. Nevertheless, the general performance 

of the discriminant functions was satisfactory and aligns with findings from other 

forestry or ecological classification studies that used discriminant analysis with 

remote sensing data (Foody, 200222; Franklin, 200123). 

5. Discussion 

This study successfully applied a non-hierarchical cluster analysis followed by 

discriminant analysis to classify forest stand age using remote sensing data, 

particularly aerial imagery. The results highlight the strengths of quantitative 

variables in distinguishing age classes of forest stands, which is consistent with the 
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growing body of literature emphasizing the importance of objective metrics for land 

use and vegetation classification. 

5.1. Cluster Analysis and Age Class Identification 

The cluster analysis results, where six distinct age classes were identified, reflect the 

efficiency of non-hierarchical methods in handling large-scale and complex datasets. 

The classification of the samples into six clusters was consistent with the initial 

hypothesis based on field observations, underscoring the reliability of this analytical 

approach in ecological studies. Recent studies have similarly demonstrated the power 

of non-hierarchical clustering techniques for managing diverse forest data. For 

example, Xu et al. (2018)24 utilized k-means clustering to differentiate land cover 

types in temperate forests, reporting significant improvements in classification 

accuracy compared to traditional hierarchical methods. 

5.2. The Role of Quantitative Variables 

The discriminant analysis showed that quantitative variables, such as shape and 

texture, provided a higher discriminatory power than qualitative variables, such as 

tone and pattern. This observation is supported by recent advancements in remote 

sensing and image classification techniques, where quantitative metrics derived from 

spectral bands, texture features, and other image-derived indices have consistently 

been found to outperform subjective visual interpretation (He et al., 201925; Gislason 

et al., 201426). For example, He et al. (2019)25 demonstrated the superior 

performance of texture-based variables in differentiating forest stand structures, 

aligning with our findings where texture played a significant role in classifying 

classes. 

Moreover, the discriminative power of quantitative variables aligns with the 

advancements in machine learning and deep learning approaches for classification 

tasks in ecological studies. Recent literature highlights the integration of machine 

learning algorithms with remote sensing data to enhance the classification of 

vegetation types (Zhang et al., 2021)27. These techniques automatically extract 

relevant features from images, reducing the reliance on human interpretation and 

offering more scalable solutions for large datasets. 
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5.3. Discriminant Function Accuracy and Cross-Validation 

The discriminant functions derived in this study achieved a high level of 

classification accuracy during both initial testing (100%) and cross-validation (90%), 

suggesting that the discriminant analysis method used is reliable for classification 

tasks in forest monitoring. The cross-validation results, although slightly less 

accurate, are in line with other studies that have examined the robustness of 

discriminant analysis in land cover classification. For instance, Gislason et al. 

(2014)26 reported similar cross-validation performance in their study on forest 

structure classification, with some misclassifications arising due to inherent 

variability in forest data and overlap between certain class features. 

The misclassification rate of 10% in cluster 6, observed in the current study, may be 

attributed to the intrinsic heterogeneity within that particular class. Similar findings 

were reported by Liang et al. (2020)28, who used discriminant analysis on forest 

canopy types, noting that certain canopy types exhibited significant internal 

variability, which resulted in misclassifications despite high overall accuracy. This 

suggests that further refinement of classification methods, such as incorporating 

additional variables or hybridizing techniques with machine learning models, could 

reduce the misclassification rates in future studies. 

5.4. Literature on Remote Sensing and Discriminant Analysis 

Recent research has increasingly focused on combining discriminant analysis with 

other statistical or machine learning methods to improve classification performance. 

Studies by Li et al. (2016)29 and Zhang et al. (2021)27 highlight the complementary 

use of discriminant analysis with random forests and support vector machines (SVM) 

for more accurate land cover classification. These hybrid approaches leverage the 

strengths of both traditional statistical methods and advanced machine learning 

algorithms, offering promising results for future applications in forest management 

and ecological studies. 

Furthermore, the importance of multispectral and hyperspectral data in forest stand 

classification has been extensively documented in recent literature. Gislason et al. 

(2014)26 emphasized the value of spectral diversity in distinguishing various forest 

types and age classes, a concept that aligns with the approach taken in this study, 
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where texture and shape were critical features derived from the aerial images. 

Advances in remote sensing technology, such as the development of higher 

resolution imagery and better spectral bands, are further enhancing the capabilities of 

remote sensing in ecological studies (Zhang et al., 2021)27. 

5.5. Implications for Forest Management 

The results from this study offer significant implications for forest management and 

ecological monitoring. By accurately classifying forest stands into age classes, forest 

managers can better understand stand dynamics, structure, and biodiversity. Age-

class distribution is a key indicator of forest health, influencing decisions on 

sustainable logging, regeneration practices, and biodiversity conservation (Germino 

et al., 2013)30. The ability to classify forest stands using objective, automated 

methods also improves the efficiency of monitoring efforts, particularly in large, 

inaccessible forest areas. 

Recent literature further underscores the relevance of this approach to sustainable 

forest management. For example, Ferraz et al. (2021)31 highlighted the potential of 

remote sensing techniques, combined with machine learning, for monitoring forest 

regeneration and health at a landscape scale. These methods can provide real-time 

data on forest dynamics, helping to predict changes in forest structure due to climate 

change or human intervention (Xu et al., 201824). In this context, the methods 

employed in this study can be seen as a step toward integrating remote sensing-based 

monitoring systems into broader forest management frameworks. 

6. Conclusion 

The application of non-hierarchical clustering and discriminant analysis in forest 

stand classification is a promising approach for enhancing forest management 

practices. This study’s results contribute to the growing body of literature advocating 

for the use of quantitative metrics and advanced statistical techniques in ecological 

classification tasks. Further refinement of these methods, particularly through the 

integration of machine learning and multi-source data, could provide even more 

accurate and scalable solutions for forest monitoring. 
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