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ABSTRACT: In this research work, System (1.1), which is a

class of Semilinear  Fractional  Stochastic  Delay
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Integrodifferential Systems with Distributed Delays in The
Control in the framework of Banach Spaces, is presented and
exposed to Controllability Analysis. The principal objectives
here are to State and establish necessary and sufficient
conditions for Relative Controllability/ or Controllability of
The System. From the results of The Controllability Analysis,
the principal objectives were achieved using some
Controllability Standards and the intersection property of two
compact and convex set-valued functions. Advanced
Mathematical tools, such as; The nxm Matrix-valued Function
Definition, M** (¢,), The Lebesgue-Stieltjes Integration, The
Unsymmetric Fubini Theorem and The Variation of Constant
Formulae were made use of to cultivate The Mild Solution of
The System. From the cultivated Mild Solution, key
Controllability related components which our work hinges, vis
a vis; “Attainable Set, Reachable Set, Target Set,
Controllability Index and Controllability Grammian or Map”
were carefully extracted. This work extends existing

controllability theory by generalizing controllability results
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obtained earlier for Semilinear Fractional Stochastic Delay Integrodifferential
Systems with a point Delay in the Control to a broader class involving Distributed

Delays in the control.
Mathematical Subject Classification (2020): 93C15, 45K05, 34K37, 34A08

Keywords: CONTROLLABILITY, DISTRIBUTED DELAYS, TARGET SET, SET
FUNCTION, RELATIVE CONTROLLABILITY.

1.0 INTRODUCTION

Integrodifferential Systems frequently arise in diverse domains of engineering and
sciences in particular Fluid dynamics, biological models, and Chemical Kinematics
[1,2].

Thorough study of integrodifferential Systems shows that so many physical
phenomena like heat condition in materials with memory, combined conduction,
problems involving convection and retardation are modeled using integrodifferential
Systems [1, 2]. Also, Mittal and Nigam (2008) [6], in their work explores numerical
methods for such systems. It is interesting to note that controllability is specifically
importance to the control theorists as it is a qualitative property of any dynamical
control system and among the basic/ or fundamental concepts in the theory of

dynamical control systems [3, 4].

In the recent years, the control theory of deterministic processes having several
degrees of freedom has attained fairly satisfactory stage of completeness as

illustrated by the theory of nonlinear ordinary differential equation [4].

Many researchers have posed and answered the fundamental problems of control
theory; hence, the field have received a robust attention. Consequently, in a quest to
establish a foundation on which subsequent researches would be anchored, the
authors, assert that a careful and comprehensive exposition of the present status of
the control theory will serve the purpose. Motivated by the above intention, this
study “Relative Controllability of Semilinear Fractional Stochastic Delay
Integrodifferential Systems with Distributed Delays in the Control in Banach

Spaces” of the form;
# 0

[CFYO(t) = A(£)9(¢) + F(£,9,) + fa(g,x,;)dm(gwr [dgmt(t,ﬁ)aa(t +B), t € [£5,4] .0

-T

0
v(t) = ¢t), t€[-70]
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is carried out with a view to expose the system to controllability analysis. The stems
of the motivation for this research work sprout from the fact that so many real word
systems/ or realistic systems are influenced not only by their current state but also by
their past state known as their history. This can be observed in many fields of human

activities. To this end for an excellent grasp of the present (#) state of any dynamic
control system, it is apt to grab some information about the past (# — 1), # > 0 state

of the system.

The principal objectives in this investigation are to obtain and establish necessary

and sufficient conditions (NASC) for the system to be relatively controllable.
2.0 NOTATIONS AND PRELIMINARIES
In this section, we define some basic symbols and concepts used in the study.

Let E denote the real line, for n € Z, E™is the n — tuples Euclidean space equipped

with the norm, |. |.

Let ] = [£,, ;] be any subinterval of E, where ¥, and %, € E such that #, < %;.

Here, ¥ € E™ while u is an m-dimensional vector control function that is admissible,
square integrable and subject to ‘uj‘ =1, j=12,..,mand 9(0) = ¥, (the initial

interval condition).

2.1 A DESCRIPTION OF THE SYSTEM (1.1)

e [“FY denotes the Caputo fractional derivative of order y, % < y<1]l,6].

o Mi(t,B) is a matrix with dimension n X m; defined on the delay interval,
[—7,0]: T > 0. It is continuous in # and of bounded variation in f3.

* dg denote the integration with respect to § and it is in the Lebesgue-Stieltjes

Integration sense.
e A(#)and G(g,9,) are n X m matrices; continuous in their arguments. While A(#)
generates infinitesimally an analytic semi-group operator, S(#), # = 0, that is

linear and bounded on ¥ (separable) and also equipped with {.,.} and I.I, the inner
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product and norm respectively, G is a family of L(K,Y) continuous function from
K — Y. If K =Y, we simply write L(Y) instead of L(K,Y) [1, 3].

e ¢ denotes a finite second moment €, — valued random variables that is
independent of the wiener process, w. Thus, ¢ € C([—1,0],¥) = C,. ¢ is
equipped with the sup norm and € ([—t, 0], ¥) is a Banach Space.

e We have the segment function;

9.(0) =9(¢ +0); for ¥(.) € C([-1,0],Y)
Which implies that, 9,(.) € C; for £ €]; 8 € [—1,0].

e The admissible and constraint set U is closed and bounded in L. The symbol §
denotes an operator from U toY, bounded and linear. The w, which is
YV — Valued, governs the stochastic component of the system.

e Finally, F also is ¥V — Valued mapping.
2.2 VARIATION OF CONSTANT FORMULAR

Integrating System (1.1) using Hamdy M. Ahmed et al (2019) like arguments, [3] as

contained in [1], we cultivate the mild solution of the system (1.1) given as;

i
9(6) =S, (£)(0) + f (£ — V1T, (¢ — ©)F(g,x.)dg
Q

E E
" [ (¢ — )T, (t —¢) [ 6(0, x,)dew(o)dg
0 0

¢ 0
+ [(t — ¢TI, (£ —¢) fdﬁiﬂt(t,ﬁ)zt(t + B)|dg t € [0, %]
0

—h

Uo(0) = ¢(o),
g € [—1,0] (2.2)
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where,

o0 oo

S,(£)0 = E f 2, (B)S(YB)IAB and T,(#)0 = y f Bz, (B)S(tYB)Odp
Q

0

with z, = probability density function with domain in the open interval (0, ).

System (2.2) shows that the last term in the right-hand side of system (2.2) contains

values of the control u(£) for + < 1, as well as for £ > #, (£, = 0) when observed

carefully.

The value of u(#) for t € [£, — 1, ty] mixed with the definition of initial complete

state given by z(0) = {9,, uto} See [8].

To distinguish them appropriately, the last term of the system (2.2) must be
transformed by changing the order of the integration. By using the Unsymmetric
Fubini theorem, we obtain the following equalities. For £ = #;, we have system (2.2)

given as; (see [7] and [1])

21

(¢, £, 0o, u) = S, (£)p(0) + f (£, — V1T, (4, — O)F(c,x )de
Q

L1 <

N [ (1 — o)1, (£ — ) [ 6(0, x)dw(0)ds
0 Q

0 #1+8
+ f dMg f (£1 — ¢ — BT, (£, — ¢ — PIW(s — B, Buls — B + Bldg | (2.3)
-T 0+g

L1

= 5,(£)$(0) + [ (£, — V1T, (¢, — )F (5, x.)ds
0

£ ¢
n [ (&, — )T, (8, — ©) f 6(0, x;)dw(a)dg
1] (1]
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0

4]
b [ ams| [ o= I - o - M - B Puo)ds

0+8
0 t+6
+ f dMg f (ty —¢ — BT, (¢ — ¢ — Mg — B, Pul)ds (2.4)
-T 0

Where dig denotes that the integral is Lebesgue-Stieltjes integration with respect to

the variation £ in the function MM (%, B).

Consider the definition below:

. (M, B) for c<#,BER=E (2.5) (4.5)
m(g'ﬁ)_{o for c>ty € R-E
System (2.4) now becomes:

21

(¢, £, 0o, u) = S, (£)p(0) + f (£, — V1T, (4, — O)F(c,x )de
Q

£ ¢
; [ (1 — o)1, (£ — ) [ 6(0,x,)dw(0)dg
1] 4]

4] [ O
b [ ams| [ o= I - o - M - B Puo)ds
-T |0+5
0 [y
+ fd"m,g f(tl —¢ =BT, (£, — ¢ — PIW (¢ — B, Plulc)dg (2.6)
-T |10

Applying Unsymmetric Fubini theorem again, System (2.6) can be written

conveniently as below;
1y

B¢, £, 0o, u) = S, (£)(0) + f (1 — o) 'T, (1 — O)F(c,x.)dc
Q

4 f (1 — V1T, (£, — ) [ 6(0, x,)dw(o)ds
0

0
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0 0

+ f dg J-('tl —¢— BT, (£, — ¢ — B)M(c — B, Plug(¢)dg

-T 0+5
T 0

" [ [ (£, — ¢ — BY T, (4, — ¢ — BYAMEA' (¢ — B, B) | uc)de @.7)
Q —T

The Integration is in the variation § in It. And also in the sense of Lebesgue Stieltjes;

For conveniency and brevity, let us make the following definitions;

£

n(t,¢) = S, (£)p(0) + f (£, — V1T, (¢, — ¢)F (g, x )de
Q

L1 <
@ - -o [ Gexdde@ds @8)
0 Q

0

Q
ut, o) = [ M, [ (£, — ¢ — BT, (4, — ¢ — FIM(g

0+8

— B, Bluo(¢)dg (2.9)

0
At,o) = [ (1 — ¢ — BT, (£ — ¢ — B)dTMM (¢

-B.B) (2.10)

Substituting the systems (2.8), (2.9) and (2.10) into system (2.7), we obtain a definite

variation of parameter/ or constant formulae of system (1.1) as follows:

L1

(¢, t0, 9,1) = N, ) + ult,¢) + [ ACE, ulg)ds (2.11)

0

2.3 DEFINITIONS

We make the following definitions which are crucial in the sequel.
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2.3.1 The complete state of the system at time %, denoted by z(£) comprise the solution of

the system at that time and the corresponding control function at that time. That is;
z(£) = {9, u,}

2.3.2 The initial complete state of the system, denoted by z(#4) at the initial time % is

given by
z(ty) = z(0) = { (%), “to}-

2.3.3 The system is relatively controllable on |, if for all initial complete state {15‘0, uto}

and the target state 1#; € E™, there exists an admissible control function u(#),
defined on J, such that 9(%, £,, ¥y, 1) = ;.

Alternatively [2, 7], for any given dynamical control system, such as System (1.1),

relative___controllability of such system on a given interval of R such as J, holds

whenever;

A N G # 0;both with the arguments £,,%,, 1ty >ty =0.

234 The reachable set of system (1.1) over [ 1s defined thus:

BT o

R(ty,%0): = J- J-(’fl —¢— ﬁ)y_lTy(’fl —¢— B)dWpM (¢ — B, B) | ulg)ds

0

ru eu

2.3.5 The attainable set, A(£,,£,) of system (1.1) over [ is defined thus:

Jl(‘tl,‘tﬂ) = {1?(’5‘1,1':‘0,190,!1) fu € U}

2.3.6 The target set, G(£,.£,) of system (1.1) over | is defined thus:

G(ty, 1) = {0(#,, %0, 0y, 1) 1 £, =] > t, for some fixed J*,and u € U}.

2.3.7 The Controllability Grammian or map of the system (1.1) 1s defined thus:

£

w(ty, £y) 1= f Aty O (£1, ©)de
tg
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And T denotes the matrix transpose and A(#,, ¢) is as in system (2.10) above.

2.3.8  System (1.1) is considered proper in E™ on ], if the reachable set spans over

the entire space. That is Span R(#,,%,) = E™ and if

0
cT [(‘fl —C —ﬁ)y_lTy(‘fl —¢—B)dMgM (c—B,)|=0 a.e
-T
t; >4, =0, Then C =0; C € E™ [2]. Here and elsewhere, a.e means “almost

everywhere”
24 CONTROLLABILITY STANDARDS OR CONDITIONS |2]

The following assertions known as controllability standard will be applied to

establish our results.

1. The Intersection property of The Attainable Set and The Target Set defined below;
Aty t0) NG, ) = 0
Implies that the system (1.1) is controllable.

2. 1If the inverse of the controllability grammian, w(#,,%,) ! exists, then system

(1.1) is controllable.

3. If the product of €T and the controllability index is zero almost everywhere on the
interval of controllability, it implies that € = 0, which in turn implies

controllability of the system.
That is,

0
cT f(%l —¢— BT, (£, — ¢ — B)dMegM (¢ — B, B)| =0 almost everywhere
-7

Fort, >0=+#,=C =0; C €E".

and

Q
9@ = f (£, — ¢ — BY T, (4, — ¢ — F)AMEM' (¢ — B, B)
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g(t) is the controllability index of system (1.1).

4. If zero is an interior point of the Reachable Set, then the system of interest is

controllable [5, 8].
3.0 MAIN RESULTS

In this section, we shall state and prove the necessary and sufficient conditions for
relative controllability of our system, system (1.1) above, defined here as system
(3.1);

£ 0

[FYO(£) = A(#)0(#) + F(£,9,) + [G(g.xg)dm(g) + [ dgM(t, Plult + ), t € [£5,14]
0 -T
U(t) = ¢(#), ¢t € [-70]
Theorem 3.1 (NASC for Relatively Controllability)

Given system (3.1) vis a vis system (1.1) with its outstanding hypothesis, then the

statements below are equivalent:

a) System (3.1) is relatively controllable on | € E
b) The Controllability Grammian, w(#;,%,) of system (3.1) is non-singular

c¢) System (3.1) is properon ] c E.
(Where NASC is necessary and sufficient condition).
PROOF

Let us establish the equivalence of (b) and (c). Assume (b) holds, that is, the

controllability grammian, (%,,%#,) of (3.1) is non-singular. From The

Controllability Standard or Conditions (See subsection 2.3, [8]), we observed that
non-singularity of w(#,,%,) implies that w(#,,%,) is positive definite, which also

means that if the product of €T and the controllability index is zero, that is;

CT times the controllability index equal to zero: given as;
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0

cT I(fl—c—ﬁ)”‘lTy(ﬁ—c—ﬁ)diﬂtﬁ’iﬂt*(c—,@.ﬁ) =0 a.e

—T
—=C=0;C €EE"; £, >0 =4,

Thus, we have shown that the non-singularity property of the controllability

grammian, w(#;,%,) is equivalent to the properness of the system. Thus (b) and (c)

are equivalent.
To establish/ or prove the equivalence of (a) and (c);

Let € € E™, and assume that (3.1) is proper; i.e.
0
cT J-(’fl — ¢ _ﬁ)y_lTy(’fl — ¢ —6)d%Utg%Ut”’(c —B.B)=0 ae;
-T

t € [#,, t,] for each #, then

£y 0
[ cT f (1 — ¢ — BT, (¢, — ¢ — B)dMM* (¢ — B, B) | ulc)de
g -T . .
- [ cT f (8, — ¢ — BT, (£, — ¢ — BYAMA" (¢ — B, B) ulc)d,
£p -T
Foru € L,.

The above equality implies that C is orthogonal to R(#;, %,), where;

i o
R(#y,%0) = J- lJ-(’fl —¢ _ﬁ)y_lTy(’fl — ¢ —ﬁ)d?mg?m”’(c — B,B) | ule)dc:u
g LT

€L,

Now, assuming that (3.1) is relatively controllable, then
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Span R(#,,%t,) = E"

which implies that C = 0. Hence (a) implies (c).

Conversely, if we assume that (3.1) is not relatively controllable. Then, the span of

the reachable set, Span R(£,,%,) # E™, for £; > %, = 0. Hence, there exists
C =+ 0, CEE"so that
CT.‘.R(‘tl,’tﬂ) - Cl

It follows that for all admissible control u € L,;

1l 0
0=cr f f (£, — ¢ — BV IT, (4, — ¢ — R)AMT (¢ — B, ) | uc)ds.
g LT

Hence,

0
cT I(fl—c—ﬁ)”‘l?}(ﬁ—c—ﬁ)diﬂtﬁwt*(c—ﬁ.ﬁ) =0 a.e,
t € [ty %], and C = 0.

This contradicts the assumption that (3.1) is proper. Thus (a) and (c) are equivalent.

However, if 0 € interior of R(#,, £,) for £; > £3 = 0, then
0
cT [(‘fl — ¢ —ﬁ)y_lTy(‘fl —¢—F)dWM (c—B,)|=0 a.e,
-7

= C=0.

This implies that (3.1) is proper. Thus (a) and (c) are equivalent. Thus, following the
equivalence of Theorem 3.1, system (3.1) is relatively controllable on

[#,,%1]; %, > £,. Completing the proof.

3.1 CONACLUSION
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We have stated and established the necessary and sufficient conditions for The
Relative Controllability of the family of systems described by Semilinear Fractional
Stochastic Delay Integrodifferential Systems with Distributed Delays in the control in
Banach Spaces of the form, system (1.1), (See Theorem 3.1 and the proof thereof).
The controllability analysis performed in this work demonstrates that The Relative
Controllability of the class of systems described by system (1.1) can be characterized
through the following; the intersection property of the attainable set and the target

set, the controllability grammian or map and the properness property condition.

This research work extends the concept of Relative Controllability/ or Controllability
of systems of Semilinear Fractional Stochastic Delay Integrodifferential Systems
with one point Delay in the Control such as the one presented by Hamdy M. Ahmed
etal (2019), [3] to a broader class involving Distributed Delays in the Control. Also,
the Controllability results such as the one obtained by Oraekie (2018), [2] was also

extended to stochastic systems of our form; System (1.1).
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