MSI Journal of @SIP

Al and Technology

Raman Scattering with Artificial Intelligence in Biomedicine: A New
Paradigm for Molecular Diagnostics

Dr. Nadir Omar Massoud Driza'"”, Ola Mohammed Ibrahim'®, Rafa Saad
Abdulsalam Hamad!'", Hanan Mohammed Abdulsalam Ali'»?

1" Department of Physics, Faculty of Arts and Sciences Elmarj, University

of Benghazi, Elmarj, Libya.
2 Higher institute of science and Technology Elmarj, Libya.

* Correspondence: Dr. Nadir Omar Massoud Driza

The authors declare ABSTRACT: Raman scattering is an inelastic light-scattering
that no funding was

. . process that yields a highly specific molecular fingerprint
received for this work.

derived from the vibrational modes of biological components,
including lipids, proteins, nucleic acids, and metabolic
compounds. While Raman spectroscopy offers unparalleled
Received: 15-November-2025 chemical specificity and label-free analysis, the high
Accepted: 10-December-2025 dimensionality and complexity of biological spectral data have
Published: 14-December-2025 historically limited its clinical throughput. The integration of
Artificial Intelligence (Al), particularly Machine Learning

Copyright © 2025, Authors retain ) ) ) ] ]
(ML) and Deep Learning (DL), is transforming this paradigm.

copyright. Licensed under the Creative

Commons Attribution 4.0 International This paper reviews the foundational principles of Raman
License (CC BY 4.0), which permits spectroscopy and details how Al-driven analysis is enabling
unrestricted  use,  distribution,  and the rapid, automated, and accurate interpretation of complex

reproduction in any medium, provided . . L .
P Y P biological spectra, establishing a new frontier for molecular

the original work is properly cited.

, , diagnostics in biomedicine.
https://creativecommons.org/licenses/by/

4.0/ (CC BY 4.0 deed)

Keyword: Raman Scattering, Artificial Intelligence,

Molecular Diagnostics in Biomedicine
This article is published in the MSI

Journal of AI and Technology, 1. Introduction
ISSN 3107-6181 (Online) Traditional biomedical diagnostics rely on macroscopic,
Volume: 1, Issue: 3 (Oct-Dec) 2025 morphological, or labor-intensive biochemical assays. In

Page 1 of 13 https://zenodo.org/records/17962203


https://zenodo.org/records/17962203
https://orcid.org/0009-0007-0137-3991
https://orcid.org/0009-0003-2292-4183
https://orcid.org/0009-0009-6692-8219
https://orcid.org/0009-0003-7144-1348
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msipublishers.com/msi-journal-of-ai-and-technology/
https://msipublishers.com/msi-journal-of-ai-and-technology/

contrast, Raman spectroscopy (RS) provides a molecular-level, non-destructive
assessment of a sample's chemical composition [1]. The process involves the
inelastic scattering of incident photons by molecular vibrations, resulting in a
spectrum of shifted wavelengths. This spectrum is an intrinsic signature of the
sample, sensitive to the subtle changes in lipids, proteins, nucleic acids, and

metabolites characteristic of disease states.

The clinical transition of RS, however, faces a significant hurdle: the complexity and
noise inherent in biological spectra [2]. Variations due to instrumental factors,
fluorescence background, and the subtle nature of pathological changes within a
high-dimensional dataset make manual or traditional statistical analysis challenging
and time-consuming. The emergence of powerful Al techniques offers a solution,
automating feature extraction and classification with unprecedented accuracy and

speed [3].
2. Methods of Raman Scattering Fundamentals in Biomedicine and AI Analysis
2.1 Raman Scattering Principles

Raman scattering provides chemical specificity based on the principle of inelastic

interaction:

A — 1 1
YT A A

where Av is the Raman shift (in cm™), A; is the incident wavelength, and A; is the

scattered wavelength (see Fig. 1).

The spectral regions correspond to major biological components, generating a unique
molecular fingerprint for each tissue or cell type. This phenomenon is critical for

understanding the molecular changes associated with disease.
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Figure 1: [llustration of Raman Scattering. A diagram illustrating the basic principle of

Raman scattering, showing an incident photon interacting with a molecule, leading to

Rayleigh scattering (elastic) and Stokes/Anti-Stokes Raman scattering (inelastic) with energy

shifts corresponding to molecular vibrational states. These shifts create the unique moleculal

finegrnint.

Figure 2 declares representative Raman spectra of biological components. It clarifies

the typical Raman spectra with distinct peaks for major biological components like

lipids, proteins, and nucleic acids, highlighting their characteristic molecular

fingerprints.

=t Lipids

-y A Proteins
—A— Nucleic Acids
200
)
= 400 -
-
>
3
=
-
< 100
Z
w
=
= Amide 1
5 130 |
- & n 780
t Amide II1
M e L
A, AsA A
Y v w—-—k—m
130 - ) X
Tryptobpan Base vibratinns
500 T T T T T 1
500 150 140 160 160 3200 3200

Raman Shift (cm™)

Figure 2: Representative Raman Spectra of Biological Components.
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Table I: It illustrates that the [4] Mol2Raman model is an advanced Al tool that
predicts the chemical fingerprint of a molecule (the Raman spectrum). It achieves
this by directly analyzing the molecule's structural identity, which is provided as a
simple line of code called SMILES. This specialized analysis is performed by a
Graph Neural Network (GNN), allowing the system to quickly and accurately

forecast spectral results without requiring any physical laboratory testing.

Biomolecule Class Example Peak Chemical
Region (cm™) Significance
Proteins 1600-1700 (Amide I) Secondary structure
(e.g.,a-helix, B-sheet)
Lipids 2800-3000 (C-H Lipid-to-protein ratio,
stretch) fatty acid saturation
Nucleic Acids 700-1000 (Phosphate Cell proliferation rate,
backbone) DNA damage
Carbohydrates 1000-1150 (C-O Glycosylation
stretch) changes, cell wall
components

Pathological conditions, such as cancer or infection, induce quantifiable shifts in the
intensity and position of these peaks, which are captured as large datasets of spectral

information [5].
2.2 The Role of Artificial Intelligence in Spectral Analysis

Al, encompassing ML and DL, provides the necessary computational framework to
handle the volume and complexity of Raman data, enabling the effective translation

of spectral shifts into clinical decisions [6] [7] [8] [9].
2.2.1 Machine Learning for Classification and Regression

Traditional Machine Learning [10] (ML02) models are frequently employed for
classification tasks, which involve differentiating between biological states, such as
healthy versus diseased. Several common algorithms are utilized for this purpose.

The Principal Component Analysis-Linear Discriminant Analysis (PCA-LDA)
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approach is a standard method for tissue type differentiation [11] [12] [13] [14]. In
this combined technique, PCA is initially used for dimensionality reduction and noise
filtering, which is then followed by LDA to maximize the separation between
predefined classes. Another effective algorithm, Support Vector Machines (SVM), is
particularly well-suited for high-dimensional data as it works by finding the optimal
hyperplane to separate classes within the spectral space; this technique is commonly
applied in areas such as single-cell sorting and microbial identification. Finally,
Random Forests (RF) algorithms, which rely on using multiple decision trees,
provide robust and interpretable classification models and are often leveraged to

identify the most important spectral features, or biomarkers.
2.2.2 Deep Learning for Feature Extraction and Automated Analysis

Deep Learning (DL) models [15], especially Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs), represent the cutting edge in
spectral analysis by learning directly from raw, high-dimensional spectral data, thus
bypassing the need for traditional feature engineering. CNNs are particularly well-
suited for processing spectral data, which can be treated as one-dimensional signals.
Their convolutional layers automatically learn the most relevant spatial features
(such as peak positions and widths) for subsequent classification or regression tasks.
A typical CNN architecture for Raman analysis comprises several 1D convolutional
layers followed by pooling layers for dimensionality reduction, and ultimately, fully
connected layers for classification. In terms of application, CNNs have demonstrated
high accuracy (often exceeding 95%) in critical tasks, including differentiating
malignant from benign tissue and classifying single-cell bacterial strains based
purely on their spectral signatures [16] [17] [18]. Furthermore, CNNs excel in
Hyperspectral Imaging Analysis by processing Raman hyperspectral images (where
each pixel contains a full Raman spectrum), which enables automated tissue
segmentation and real-time visualization of pathological regions [19] [20] [21].
While less common than CNNs, Recurrent Neural Networks (RNNs), specifically
Long Short-Term Memory (LSTM) networks, are also being explored for processing
sequential spectral data, giving them the potential to capture long-range

dependencies across the entire spectral range.
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Figure 3 is conceptual diagram of an AI-Raman system for diagnostics a flowchart
illustrating the typical workflow of an AI-Raman system, from sample acquisition
and Raman spectroscopy data collection, through data preprocessing, to Al model

training (e.g., CNN) and final diagnostic output.
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Figure 3: Concepual Diagram of Al-Raman System for Diagnostics.

Table I1: Here is a table summarizing the specific differences between Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) as applied to

spectral analysis.

Convolutional Recurrent Neural
Feature Neural Network Network (RNN) (e.g.,
(CNN) LSTM)

Treats the spectrum as
Treats the spectrum as
a sequence of data
Data Interpretation a 1D spatial signal ]
) ) points over
(like a narrow image).

time/wavenumber.
Convolutional Filters Recurrent Connections
) (Kernels) slide over and Hidden States
Core Mechanism '
small, local windows process data
of the data. sequentially.

Captures local spectral
Captures long-range
features (peak )
. . . dependencies and
Primary Strength position, width, shape)
‘ . context across the
and is translation
o entire spectral range.
mvariant.
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Feature Focus

Local patterns (e.g.,
the specific signature

of a single functional

group).

Sequential context
(e.g., the relationship
between a peak at 400
cm! and one at 1800

cml).

Built from 1D

Convolutional Layers,

Built from Recurrent

Cells (e.g., LSTM or

Architecture Pooling Layers, and GRU), which form a
Fully Connected deep sequential
Layers. structure.

‘ ' Time-series prediction
Classification (e.g., ‘
) ) (less common in
tissue type, bacterial
_ o ' general spectral
Typical Application strain) and

Hyperspectral Imaging

(segmentation).

classification, but
explored for complex

sequences).

3. Results and Discussion

3.1. Performance Metrics and Validation

The efficacy and clinical utility of these AI-Raman models are quantified using
standard machine learning performance metrics, ensuring robust and generalizable

results.

Table III: This table detailing the performance metrics (Accuracy, Sensitivity,
Specificity, and AUC) is crucial because it provides the standardized, quantifiable

evidence needed to confirm that the AI models are effective for clinical use.

Clinical
Metric Definition
Interpretation

Ratio of correctly
. . Overall correct
Accuracy classified instances to ' '
diagnosis rate.

the total instances.
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True Positives / (True Ability to correctly

Sensitivity (Recall) Positives + False identify diseased
Negatives). samples.
True Negatives / (True Ability to correctly
Specificity Negatives + False identify healthy
Positives). (negative) samples.

Evaluates how well

Area under the the model can
Area Under the Curve Receiver Operating distinguish between
(AUC) Characteristic (ROC) classes at all potential
curve. classification
thresholds.

A measure of a

_ model's accuracy on a
Harmonic mean of .
specific class,
F1 Score precision and ‘
o especially useful when
sensitivity.
datasets are

imbalanced.

Validation typically employs techniques like k-fold cross-validation to ensure that the
model’s performance is not specific to the training subset. A high AUC value (close
to 1.0) is often cited as proof of strong diagnostic capability, demonstrating the Al
system's ability to reliably translate complex spectral changes into a simple, binary

diagnostic output [22] [23].
3.2. AI-Driven Applications in Biomedical Diagnostics

The synergy between high-specificity Raman spectroscopy and high-efficiency
Artificial Intelligence (AI) analysis is creating transformative applications across
medicine and diagnostics. Specifically, AI-Raman systems are under development
for Intraoperative Margin Assessment, providing real-time tissue [24]
classification—such as distinguishing between tumor and normal brain or breast
tissue—orders of magnitude faster than conventional frozen section analysis, thereby

significantly decreasing operation time and enhancing positive margin rates [25]
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[26]. Similarly, AT models are used for Rapid Antimicrobial Susceptibility Testing
(AST) by analyzing subtle spectral shifts in bacteria in response to antibiotics within
minutes, drastically cutting the time required for AST from days to hours; this allows
clinicians to prescribe targeted antibiotics earlier, which is critical in the fight against
Antimicrobial Resistance (AMR) [27]. Furthermore, the integration of AI with
Surface-Enhanced Raman Scattering [10] [28] (SERS) technology enables Liquid
Biopsy and Biofluid Analysis through the ultra-sensitive detection and classification
of low-concentration biomarkers, such as circulating tumor cells or exosomes, found

in biofluids, thus opening up new pathways for non-invasive diagnostics [28].
4. Conclusion

In this article, we made it clear that Raman scattering offers an invaluable molecular
window into biological systems. However, its potential is fully realized only when
paired with sophisticated computational tools. The synergy between Raman
spectroscopy and Artificial Intelligence addresses the inherent challenges of
biological data complexity, enabling rapid, automated, and highly accurate molecular
diagnostics. This convergence marks a significant advancement in biomedicine,
promising to revolutionize diagnostics from the pathology lab to the point-of-care

setting by providing clinicians with instant, high-specificity molecular information.
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