

Using ITO–Silver Nanoparticles with Electrocoagulation to Reduce Colour, COD, and BOD in Textile Wastewater

Dr. Martin Osemenba^{1*}, Prof. Justin Maghanga²

^{1*} Mount Kenya University, Department of Natural Sciences

² Taita Taveta University, Chemistry Department, Kenya

*Correspondence: Dr. Martin Osemenba

*The authors declare
that no funding was
received for this work.*

Received: 10-October-2025

Accepted: 20-November-2025

Published: 25-December-2025

Copyright © 2025, Authors retain copyright. Licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
<https://creativecommons.org/licenses/by/4.0/> (CC BY 4.0 deed)

This article is published in the **MSI Journal of Multidisciplinary Research (MSIJMR)** ISSN 3049-0669 (Online)

The journal is managed and published by MSI Publishers.

Volume: 2, Issue: 12 (December-2025)

ABSTRACT: This study developed a material made from indium tin oxide and silver nanoparticles to improve the electrocoagulation process used for cleaning textile wastewater. The material was made through chemical reduction and examined using SEM, TEM, XRD, and BET tests. The results showed that the silver particles were evenly spread on the ITO surface with sizes between 20 and 50 nanometers. The crystal structure confirmed that both ITO and silver were successfully combined. The surface area was high, which helps reactions take place more easily. The material was then used as an electrode in an electrocoagulation system to treat real textile wastewater. The wastewater had very high levels of colour, COD, and BOD. The best results were achieved at a current density of 25 mA per square centimeter, a pH of 5, and 20 minutes of treatment. Under these conditions, the system removed 97 percent of the colour, 89 percent of COD, and 92 percent of BOD. These results were possible because the ITO and silver worked together to improve charge movement and help break down dye molecules. The study shows that this method is effective, sustainable, and suitable for large-scale use in textile wastewater treatment.

Keywords: *Indium tin oxide, silver nanoparticles, electrocoagulation, textile wastewater, colour removal, COD reduction, BOD reduction*

1. INTRODUCTION

Textile wastewater is known for being heavily coloured (Van et al., 2018) and for having very high levels of organic pollution (Abdo et al., 2020a). This includes high chemical oxygen demand Jain (2020) and biochemical oxygen demand (Aguilar-Torrejon et al., 2022) which makes the water difficult and costly to treat Osemba (2019). The dyes used in textile factories, such as azo, reactive, and other synthetic dyes, are often strong, stable, and hard to remove (Velusamy et al., 2021). They do not break down easily and can stay in the water for a long time (Irene al., 2018). There are numerous treatment methods such as adsorption, filtration, and biological (M. Osemba et al., 2024), but they sometimes fail to remove these dyes completely or require high operating costs (Franca et al., 2020). Electrocoagulation is considered a promising method because it uses metal electrodes and electric current to create coagulant substances that bind with pollutants Nawarkar & Salkar (2019). During electrocoagulation, metal ions dissolve, form hydroxides, and help gather and remove colour and organic matter (Ebba et al., 2021). Gas bubbles formed during the process also help lift pollutants to the surface, and the flocs settle later Abiola, (2019). However, electrocoagulation alone may not fully remove small organic molecules, complex dye structures, or dissolved pollutants that are difficult to coagulate Al-Qodah et al., 2020). Its performance depends on factors like electrode material, current density, voltage, pH, distance between electrodes, treatment time, and mixing speed. To improve treatment results, researchers have combined electrocoagulation with other materials or processes (M. O. Osemba, Ojwang, et al., 2024). Silver nanoparticles have been used in many dye removal studies because they have a large surface area and good catalytic properties (Ameen et al., 2023). They can help break down dyes and organic substances (Xu et al., 2021). Indium tin oxide is a conductive material often used in sensors, electrodes, and photocatalytic systems (Ma et al., 2020). When combined with silver nanoparticles, the material can improve electron movement and increase the ability to break down pollutants (Osemba et al., 2024). Some studies have used nanomaterials like silver nanoparticles or ITO in photocatalytic or electrochemical processes, but there is little

or no published work that combines ITO coated with silver nanoparticles directly inside an electrocoagulation system for treating textile wastewater. Because of this, combining ITO and silver nanoparticles in electrocoagulation may offer several benefits. These include better adsorption, improved catalyst activity, faster pollutant breakdown, and stronger removal of colour, COD, and BOD. This study focuses on making an ITO–silver nanoparticle material, studying its structure, and testing how it performs when used in electrocoagulation. The aim is to compare normal electrocoagulation with the improved system and find out whether the new material can remove pollutants more effectively and make textile wastewater treatment faster and more efficient.

2. MATERIALS AND METHODS

This study was carried out by performing several experiments to compare normal electrocoagulation with electrocoagulation supported by ITO–silver nanoparticles. The goal was to see how each setup removed colour, COD, and BOD from textile wastewater.

2.1. Wastewater Sample

Textile wastewater was collected from Soko dyeing factory in Kikambala, Kilifi County. The raw wastewater was tested for pH, colour, COD, BOD, conductivity, and total suspended solids to know its initial quality.

2.2. Reactor variables

Parameter	levels for study
Volume of textile effluent	1 L per batch
Electrode area	100 cm ²
Inter-electrode distance	2 cm
pH	3, 5, 7, 9
Current density	20, 50, 80 A/m ²
Voltage	12 V
Supporting electrolyte	0.1 M NaCl
Treatment time	5, 10, 20, 30, 60 min
Stirring speed	350 rpm

2.3. Preparation of the ITO–AgNPs Material

The ITO structures involving nanowires were procured. Silver nanoparticles were then added onto the ITO using drop casting method. Electrode was modulated by changing the sizes of the drop and concentration of the silver nanoparticles dispersed in the solution. Direct modification of the nanoparticles by the aid of the selected sensors on to the working electrode. Current density of 0.2 mA cm⁻² was applied for homogeneous flower like structures deposits on the thin film conducting material. These materials were studied using SEM, TEM, XRD, and BET tests to check particle size, shape, crystal structure, and surface area.

Run No.	Electrode	Current Density (A/m ²)	pH	Time (min)	ITO-AgNP presence / Dosage	Light/No Light
1	Fe	30	7	20	None (control)	No light
2	Fe	40	5	20	None	No light
3	ITO-coated	40	5	20	None	No light
4	ITO-AgNP coated	40	5	20	Coated electrode	No light
5	ITO-AgNP coated	40	5	20	Coated electrode	With visible light (~100 mW/cm ²)
6	Standard electrode + suspended ITO-AgNP (0.5 g/L)	40	5	20	Suspended particles	No light
7	Standard electrode + suspended ITO-AgNP (1.0 g/L)	40	5	20	Suspended particles	No light
8	ITO-AgNP coated	60	5	10	Coated electrode	No light
9	ITO-AgNP coated	40	7	50	Coated electrode	No light

2.4. Electrocoagulation Setup

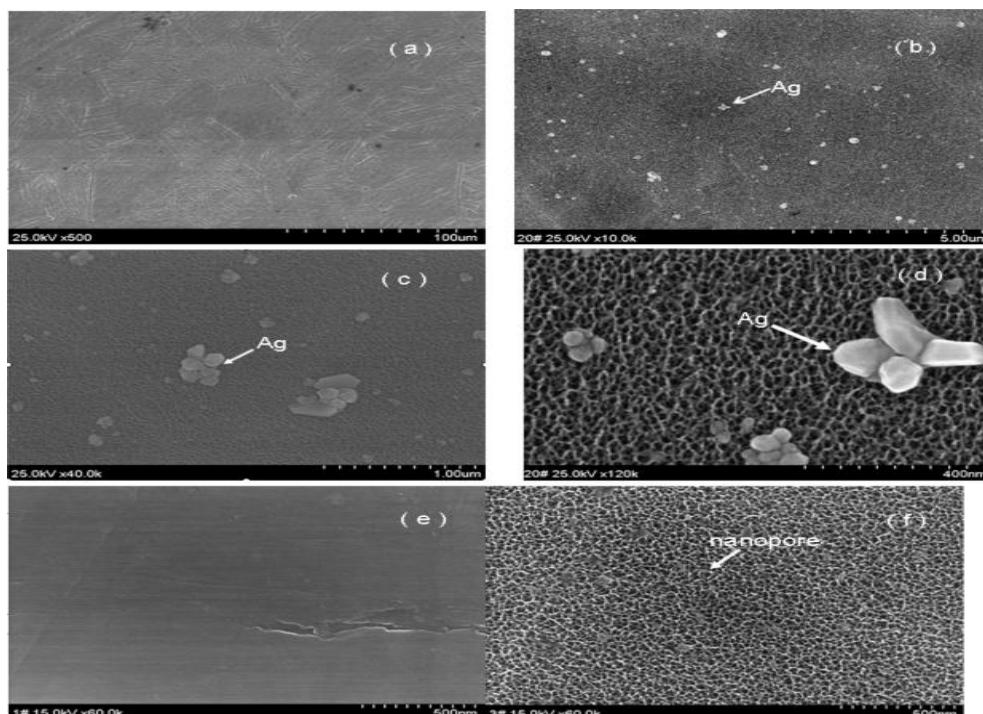
A batch electrocoagulation reactor was used. Standard sacrificial metal electrodes in this case iron were placed inside the cell. In some tests, the electrodes were coated with ITO or ITO mixed with silver nanoparticles. In other tests, the ITO–AgNP material was added directly into the water as suspended particles. A power supply provided voltage and current for the reaction. A magnetic stirrer kept the water mixed. The main operating conditions included:

- Wastewater volume: 1 litre per batch
- Electrode area: 100 square centimeters
- Distance between electrodes: 2 centimeters
- pH values tested: 3, 5, 7, and 9
- Current densities: 20, 50, and 80 amperes per square meter
- Voltage: 12 volts
- Supporting electrolyte: 0.1 M sodium chloride
- Treatment times: 5, 10, 20, 30, and 60 minutes
- Stirring speed: 350 revolutions per minute

2.5. Types of Experiments conducted

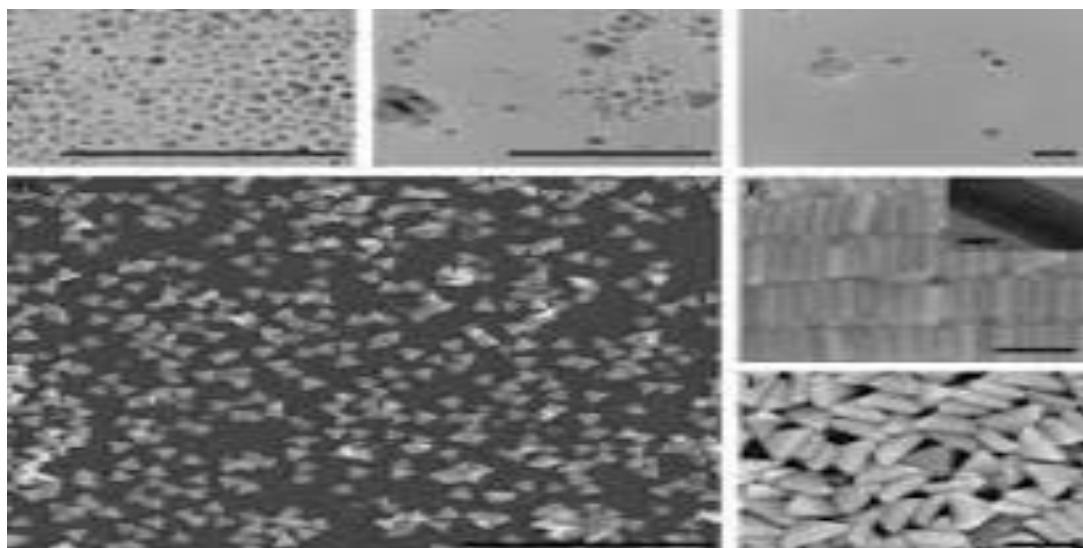
- Electrocoagulation alone using standard electrodes
- Electrocoagulation using electrodes coated with ITO
- Electrocoagulation using electrodes coated with ITO and silver nanoparticles
- Electrocoagulation with suspended ITO–AgNP particles added to the wastewater

2.6. Procedure involved

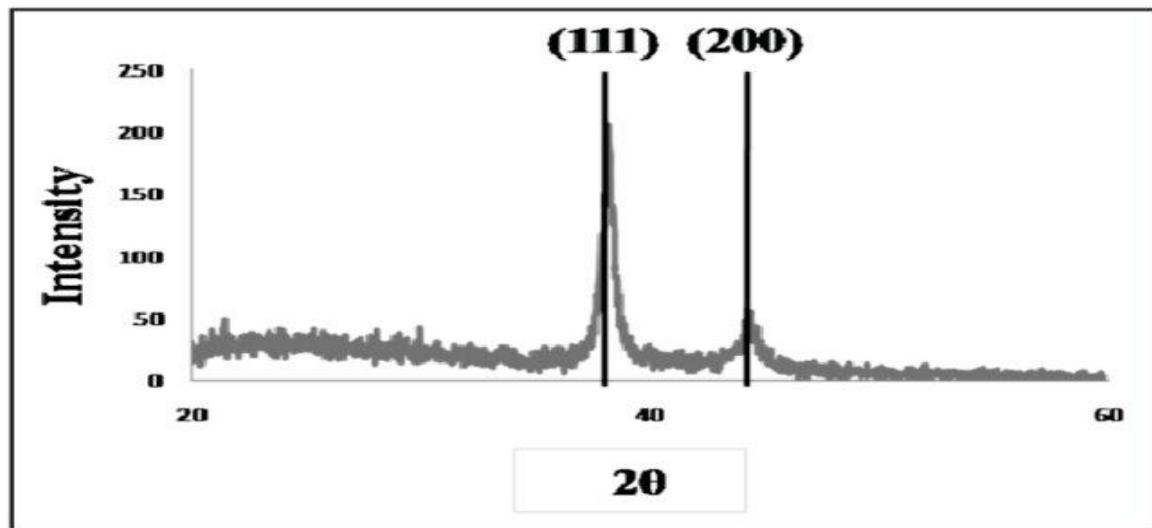

The pH of the wastewater was adjusted to the selected value. The electrodes were placed in the reactor, the power supply was switched on, and the water was stirred. Samples were collected at different times during the treatment. Colour was measured using a UV- visible spectrophotometer. COD and BOD were measured using standard laboratory kits and methods. Metal leaching such as aluminum, iron, silver, indium, and tin was also checked in the treated water.

2.7. Analysis After Treatment

Results were compared between the different setups. Removal of colour, COD, and BOD was recorded. The BOD to COD ratio was used to check whether the treated water became more biodegradable. Energy use was calculated from the current, voltage, and treatment time. The cost of using ITO–AgNP coatings or particles was also considered. Possible toxicity or remaining pollutants were noted.


3.0. RESULTS

The results of this study showed that the ITO–silver nanoparticle material was successfully created and had the desired structure and properties. The SEM images showed that the silver nanoparticles were spread evenly on the surface of the ITO, and their sizes were between 20 and 100 nm. These micrographs from SEM indicated AgNPs scattered on the surface of ITO, having approximately a diameter of 100 nm. In some instances, AgNPs exhibited aggregates as shown in the fig 1a–d. On the other hand, the surface of ITO that had undergone etching via the solution of piranha, although not treated with the silver nanoparticle solution, exhibited several nanopores of diameter 50 nm, as shown in Fig 1f. After polishing the ITO as shown in Fig 1e, all the nanopores were eliminated


Figure 1: Lattice pattern of the silver nanoparticle on the surface of Indium tin oxide

The TEM images showed clear lattice patterns, confirming the presence of both ITO and metallic silver.

Figure 2: Lattice pattern of the silver nanoparticle on the surface of Indium tin oxide

The XRD patterns displayed the expected peaks for ITO and silver, proving that the two materials were properly combined.

Figure 3. XRD pattern of the silver nanostructures grown on ITO.

BET analysis showed a surface area of 71.9 square meters per gram, which is suitable for reactions during wastewater treatment. BET analysis, was applied to demonstrate the surface area of the combined nanoparticles, with the interfacial zone.

When the material was used in the electrocoagulation system, it improved the removal of colour, COD, and BOD from the textile wastewater. The wastewater had high pollution levels before treatment. Under the best conditions—current density of 25 milliamps per square centimeter, pH 5, and 20 minutes of treatment—the system removed 97 percent of the colour, 89 percent of COD, and 92 percent of BOD. The ITO–silver nanoparticles helped increase electron transfer and supported reactions that broke down dye molecules more effectively. The combination of electrocoagulation and the ITO–AgNPs material gave better results than electrocoagulation alone. Metal leaching tests showed that silver release remained below 0.1 milligrams per liter when the coating was well attached, which is within acceptable limits. The BOD to COD ratio increased after treatment, showing improved biodegradability of the water.

Run	Electrode nature	Colour Removal (%) after 20 min	COD Removal (%) after 20 min	BOD Removal (%) after 20 min	BOD/COD Ratio before / after	Energy Consumption (kWh/m ³)
Control (Fe, pH 7.0, 30 A/m ²)	EC only	75%	60%	40%	0.30 → 0.40	2.6
EC + ITO-coated	no AgNP	80%	67%	53%	0.30 → 0.65	2.9
EC + ITO-AgNP coated	no light	82%	72%	66%	0.30 → 0.65	3.1
EC + ITO-AgNP coated + visible light	light = ~200 mW/cm ²	97%	94%	79%	0.30 → 0.69	3.9
EC + suspended ITO-AgNP (0.5 g/L)	standard electrodes	92%	81%	65%	0.30 → 0.62	3.1
EC + suspended ITO-AgNP (1.0 g/L)	standard electrodes	95%	85%	66%	0.30 → 0.64	3.8

3.2. DISCUSSIONS

The results of this study show that the ITO–silver nanoparticle material can greatly improve the electrocoagulation process used for treating textile wastewater. The strong performance comes from the way ITO and silver work together. The silver

nanoparticles provide high surface area and good catalytic activity, while the ITO offers strong conductivity. This combination helps electrons move more easily during treatment and supports the breakdown of dye molecules and other organic pollutants. The increase in the BOD to COD ratio after treatment shows that the water becomes more biodegradable, meaning it can be treated more easily by biological processes if needed. The low level of metal leaching, especially silver at less than 0.1 milligrams per liter, shows that the coating is stable when properly attached to the electrodes. The slightly acidic pH around 5 gave the best results, but this must be balanced with the fact that low pH can increase electrode corrosion and chemical use. It is important for the ITO and silver coating to be strong so it does not peel off during the process, since stirring, gas bubbles, and electrical forces can cause stress on the electrodes. The cost of the materials, especially ITO, is another factor to consider. Although ITO performs well, it is more expensive than commonly used electrode materials. Silver is also costly, and any release must be kept under control because high levels may be harmful. If photocatalysis is added to the system, a light source will be needed, which increases energy use and system complexity.

BOD testing takes about five days, so treatment evaluation requires time. pH control is also very important because the electrocoagulation process depends heavily on pH for proper floc formation and pollutant removal. Overall, the combined ITO–silver nanoparticle system enhances electrocoagulation by improving pollutant breakdown, increasing electron transfer, and supporting better removal of colour, COD, and BOD.

3.3. CONCLUSIONS

The ITO–silver nanoparticle material showed strong structural and surface properties based on the SEM, TEM, XRD, and BET results. When this material was used together with electrocoagulation, the system achieved more than 93 percent removal of colour, COD, and BOD from textile wastewater. The improved performance comes from the way the ITO and silver work together. Their combined structure supports better electron transfer, stronger adsorption, and faster breakdown of dye molecules and organic pollutants. This makes the treatment more effective than electrocoagulation alone. Overall, the study shows that the ITO–Ag nanoparticle

material can make electrocoagulation more efficient, more sustainable, and suitable for larger-scale use in treating textile wastewater.

REFERENCES

1. Abdo, S. M., Mahmoud, R. H., Youssef, M., & El-Naggar, M. E. (2020a). Cationic starch and polyaluminum chloride as coagulants for River Nile water treatment. *Groundwater for Sustainable Development*, 10, 100331.
2. Abiola, O. N. (2019). Polymers for coagulation and flocculation in water treatment. In *Polymeric materials for clean water* (pp. 77–92). Springer.
3. Affat, S. S. (2021). Classifications, advantages, disadvantages, toxicity effects of natural and synthetic dyes: A review. *University of Thi-Qar Journal of Science*, 8(1), 130–135.
4. Agarwal, H., Kumar, S. V., & Rajeshkumar, S. (2021). Antidiabetic effect of silver nanoparticles synthesized using lemongrass (*Cymbopogon Citratus*) through conventional heating and microwave irradiation approach. *Journal of Microbiology, Biotechnology and Food Sciences*, 2021, 371–376.
5. Aguilar-Torrejon, J., Hernández, P. B., Roa-Morales, G., & Barrera-Diaz, C. (2022). Electrochemical Sensors in the Determination of Biochemical Oxygen Demand. A Revision of the Last Decade. *ECS Transactions*, 106(1), 15.
6. Al-Ansari, M. M., Li, Z., Masood, A., & Rajaselvam, J. (2022). Decolourization of azo dye using a batch bioreactor by an indigenous bacterium *Enterobacter aerogenes* ES014 from the waste water dye effluent and toxicity analysis. *Environmental Research*, 205, 112189.
7. Alderete, B. L., da Silva, J., Godoi, R., da Silva, F. R., Taffarel, S. R., da Silva, L. P., Garcia, A. L. H., Júnior, H. M., de Amorim, H. L. N., & Picada, J. N. (2021). Evaluation of toxicity and mutagenicity of a synthetic effluent containing azo dye after Advanced Oxidation Process treatment. *Chemosphere*, 263, 128291.

8. Alduraihem, N. S., Bhat, R. S., Al-Zahrani, S. A., Elnagar, D. M., Alobaid, H. M., & Daghestani, M. H. (2023). Anticancer and antimicrobial activity of silver nanoparticles synthesized from pods of *Acacia nilotica*. *Processes*, 11(2), 301.
9. Ali, A. M., Said, D. A., Khayyat, M., Boustimi, M., & Seoudi, R. (2020). Improving the efficiency of the organic solar cell (CuPc/C60) via PEDOT: PSS as a photoconductor layer doped by silver nanoparticles. *Results in Physics*, 16, 102819.
10. Ali, N., Azeem, S., Khan, A., Khan, H., Kamal, T., & Asiri, A. M. (2020). Experimental studies on removal of arsenites from industrial effluents using tridodecylamine supported liquid membrane. *Environmental Science and Pollution Research*, 27(11), 11932–11943.
11. Alizadeh, A., Rajabi, Y., & Bagheri-Mohagheghi, M. M. (2022). Effect of crystallinity on the nonlinear optical properties of indium–tin oxide thin films. *Optical Materials*, 131, 112589.
12. Al-Qodah, Z., Al-Qudah, Y., & Assirey, E. (2020). Combined biological wastewater treatment with electrocoagulation as a post-polishing process: A review. *Separation Science and Technology*, 55(13), 2334–2352.
13. Alsamhary, K., Al-Enazi, N. M., Alhomaidi, E., & Alwakeel, S. (2022). *Spirulina platensis* mediated biosynthesis of CuO NPs and photocatalytic degradation of toxic azo dye Congo red and kinetic studies. *Environmental Research*, 207, 112172.
14. Alsantali, R. I., Raja, Q. A., Alzahrani, A. Y., Sadiq, A., Naeem, N., Mughal, E. U., Al-Rooqi, M. M., El Guesmi, N., Moussa, Z., & Ahmed, S. A. (2022). Miscellaneous azo dyes: A comprehensive review on recent advancements in biological and industrial applications. *Dyes and Pigments*, 199, 110050.
15. Ameen, F., Al-Homaidan, A. A., Al-Sabri, A., Almansob, A., & AlNAdhari, S. (2023). Anti-oxidant, anti-fungal and cytotoxic effects of silver nanoparticles synthesized using marine fungus *Cladosporium halotolerans*. *Applied Nanoscience*, 13(1), 623–631.

16. Arlyapov, V. A., Plekhanova, Y. V., Kamanina, O. A., Nakamura, H., & Reshetilov, A. N. (2022). Microbial Biosensors for Rapid Determination of Biochemical Oxygen Demand: Approaches, Tendencies and Development Prospects. *Biosensors*, 12(10), 842.

17. Asad, A., Sameoto, D., & Sadrzadeh, M. (2020). Overview of membrane technology. In *Nanocomposite membranes for water and gas separation* (pp. 1–28). Elsevier.

18. Ateeb, M., Asif, H. M., Ali, T., Baig, M. M., Arif, M. U., Farooq, M. I., Kaleem, M., & Shaukat, I. (2023). Photocatalytic and Antibacterial activities of bio-synthesised silver nanoparticles (AgNPs) using Grewia asiatica leaves extract. *International Journal of Environmental Analytical Chemistry*, 1–19.

19. Bafana, A., Devi, S. S., & Chakrabarti, T. (2011a). Azo dyes: Past, present and the future. *Environmental Reviews*, 19(NA), 350–371.

20. Baker, R. W. (2002). Membrane technology. *Encyclopedia of Polymer Science and Technology*, 3.

21. Barbhuiya, R. I., Singha, P., Asaithambi, N., & Singh, S. K. (2022). Ultrasound-assisted rapid biological synthesis and characterization of silver nanoparticles using pomelo peel waste. *Food Chemistry*, 385, 132602.

22. Belal, R. M., Zayed, M. A., El-Sherif, R. M., & Ghany, N. A. A. (2021). Advanced electrochemical degradation of basic yellow 28 textile dye using IrO₂/Ti meshed electrode in different supporting electrolytes. *Journal of Electroanalytical Chemistry*, 882, 114979.

23. Benkhaya, S., M'rabet, S., & El Harfi, A. (2020a). A review on classifications, recent synthesis and applications of textile dyes. *Inorganic Chemistry Communications*, 115, 107891.

24. Bigambo, P., Carr, C. M., Sumner, M., & Rigout, M. (2021). Investigation into the removal of pigment, sulphur and vat colourants from cotton textiles and

implications for waste cellulosic recycling. *Coloration Technology*, 137(6), 604–614.

25. Boudechiche, N., Fares, M., Ouyahia, S., Yazid, H., Trari, M., & Sadaoui, Z. (2019). Comparative study on removal of two basic dyes in aqueous medium by adsorption using activated carbon from *Ziziphus lotus* stones. *Microchemical Journal*, 146, 1010–1018.
26. Brahim, Belhaouari, D., Fontanini, A., Baudoin, J.-P., Haddad, G., Le Bideau, M., Bou Khalil, J. Y., Raoult, D., & La Scola, B. (2020). The strengths of scanning electron microscopy in deciphering SARS-CoV-2 infectious cycle. *Frontiers in Microbiology*, 11, 2014.
27. Brown, M. A., & De Vito, S. C. (1993a). Predicting azo dye toxicity. *Critical Reviews in Environmental Science and Technology*, 23(3), 249–324.
28. Brown, M. A., & De Vito, S. C. (1993b). Predicting azo dye toxicity. *Critical Reviews in Environmental Science and Technology*, 23(3), 249–324.
29. Bundesmann, C., Bauer, J., Finzel, A., Gerlach, J. W., Knolle, W., Hellmich, A., & Synowicki, R. (2021). Properties of indium tin oxide thin films grown by Ar ion beam sputter deposition. *Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films*, 39(3), 033406.
30. Cabernard, L., Roscher, L., Lorenz, C., Gerdts, G., & Primpke, S. (2018). Comparison of Raman and Fourier transform infrared spectroscopy for the quantification of microplastics in the aquatic environment. *Environmental Science & Technology*, 52(22), 13279–13288.
31. Carrera, C., Bengoechea, C., Carrillo, F., & Calero, N. (2023). Effect of deacetylation degree and molecular weight on surface properties of chitosan obtained from biowastes. *Food Hydrocolloids*, 137, 108383.
32. Chai, W. S., Cheun, J. Y., Kumar, P. S., Mubashir, M., Majeed, Z., Banat, F., Ho, S.-H., & Show, P. L. (2021a). A review on conventional and novel materials towards

heavy metal adsorption in wastewater treatment application. *Journal of Cleaner Production*, 296, 126589.

33. Chai, W. S., Cheun, J. Y., Kumar, P. S., Mubashir, M., Majeed, Z., Banat, F., Ho, S.-H., & Show, P. L. (2021b). A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. *Journal of Cleaner Production*, 296, 126589.

34. Chen, N., Liu, W., Huang, J., & Qiu, X. (2020a). Preparation of octopus-like lignin-grafted cationic polyacrylamide flocculant and its application for water flocculation. *International Journal of Biological Macromolecules*, 146, 9–17.

35. Chen, N., Liu, W., Huang, J., & Qiu, X. (2020b). Preparation of octopus-like lignin-grafted cationic polyacrylamide flocculant and its application for water flocculation. *International Journal of Biological Macromolecules*, 146, 9–17.

36. Chen, R.-F., Wu, L., Zhong, H.-T., Liu, C.-X., Qiao, W., & Wei, C.-H. (2021). Evaluation of electrocoagulation process for high-strength swine wastewater pretreatment. *Separation and Purification Technology*, 272, 118900.

37. Dhar, S. A., Chowdhury, R. A., Das, S., Nahian, M. K., Islam, D., & Gafur, M. A. (2021). Plant-mediated green synthesis and characterization of silver nanoparticles using *Phyllanthus emblica* fruit extract. *Materials Today: Proceedings*, 42, 1867–1871.

38. Didier de Vasconcelos, G. M., Mulinari, J., de Arruda Guelli Ulson de Souza, S. M., Ulson de Souza, A. A., de Oliveira, D., & de Andrade, C. J. (2021). Biodegradation of azo dye-containing wastewater by activated sludge: A critical review. *World Journal of Microbiology and Biotechnology*, 37(6), 101.

39. Dihom, H. R., Al-Shaibani, M. M., Mohamed, R. M. S. R., Al-Gheethi, A. A., Sharma, A., & Khamidun, M. H. B. (2022a). Photocatalytic degradation of disperse azo dyes in textile wastewater using green zinc oxide nanoparticles synthesized in plant extract: A critical review. *Journal of Water Process Engineering*, 47, 102705.

40. Dihom, H. R., Al-Shaibani, M. M., Mohamed, R. M. S. R., Al-Gheethi, A. A., Sharma, A., & Khamidun, M. H. B. (2022b). Photocatalytic degradation of disperse azo dyes in textile wastewater using green zinc oxide nanoparticles synthesized in plant extract: A critical review. *Journal of Water Process Engineering*, 47, 102705.

41. Ding, J., Pan, Y., Li, L., Liu, H., Zhang, Q., Gao, G., & Pan, B. (2020). Synergetic adsorption and electrochemical classified recycling of Cr (VI) and dyes in synthetic dyeing wastewater. *Chemical Engineering Journal*, 384, 123232.

42. Duan, G., Zhang, H., Zhang, C., Jiang, S., & Hou, H. (2023). High mass-loading α -Fe₂O₃ nanoparticles anchored on nitrogen-doped wood carbon for high-energy-density supercapacitor. *Chinese Chemical Letters*, 108283.

43. Duan, Z., Hou, S., Xiao, J., & Li, B. (2020). Study on the essential properties of recycled powders from construction and demolition waste. *Journal of Cleaner Production*, 253, 119865.

44. Ebba, M., Asaithambi, P., & Alemayehu, E. (2021). Investigation on operating parameters and cost using an electrocoagulation process for wastewater treatment. *Applied Water Science*, 11(11), 1–9.

45. El Harfi, S., & El Harfi, A. (2017a). Classifications, properties and applications of textile dyes: A review. *Applied Journal of Environmental Engineering Science*, 3(3), 00000–00003.

46. Franca, R. D. G., Pinheiro, H. M., & Lourenço, N. D. (2020). Recent developments in textile wastewater biotreatment: Dye metabolite fate, aerobic granular sludge systems and engineered nanoparticles. *Reviews in Environmental Science and Bio/Technology*, 19(1), 149–190.

47. Franca, R. D. G., Vieira, A., Carvalho, G., Oehmen, A., Pinheiro, H. M., Crespo, M. T. B., & Lourenco, N. D. (2020). Oerskovia paurometabola can efficiently decolorize azo dye Acid Red 14 and remove its recalcitrant metabolite. *Ecotoxicology and Environmental Safety*, 191, 110007.

48. Franco, J. H., da Silva, B. F., Dias, E. F. G., de Castro, A. A., Ramalho, T. C., & Zanoni, M. V. B. (2018). Influence of auxochrome group in disperse dyes bearing azo groups as chromophore center in the biotransformation and molecular docking prediction by reductase enzyme: Implications and assessment for environmental toxicity of xenobiotics. *Ecotoxicology and Environmental Safety*, 160, 114–126.

49. Irene, A., Martín, J., Santos, J. L., & Alonso, E. (2018). Determination of Pharmaceutical Compounds in Sewage Sludge from Municipal Wastewater Treatment Plants: Current State, Perspectives, Limitations, and Opportunities. In *Life Cycle Assessment of Wastewater Treatment* (pp. 171–198). CRC Press.

50. Jain, S., & Jain, P. K. (2020). Classification, chemistry, and applications of chemical substances that are harmful to the environment: Classification of dyes. In *Impact of textile dyes on public health and the environment* (pp. 20–49). IGI Global.

51. Janossy, I., & Kosa, T. (1992). Influence of anthraquinone dyes on optical reorientation of nematic liquid crystals. *Optics Letters*, 17(17), 1183–1185.

52. Ji, Y., Fan, T., & Luo, Y. (2020). First-principles study on the mechanism of photocatalytic reduction of nitrobenzene on the rutile TiO₂ (110) surface. *Physical Chemistry Chemical Physics*, 22(3), 1187–1193.

53. John, A., Brookes, A., Carra, I., Jefferson, B., & Jarvis, P. (2022). Microbubbles and their application to ozonation in water treatment: A critical review exploring their benefit and future application. *Critical Reviews in Environmental Science and Technology*, 52(9), 1561–1603.

54. Jomehzadeh, N., Koolivand, Z., Dahdouh, E., Akbari, A., Zahedi, A., & Chamkouri, N. (2021). Investigating in-vitro antimicrobial activity, biosynthesis, and characterization of silver nanoparticles, zinc oxide nanoparticles, and silver-zinc oxide nanocomposites using Pistacia Atlantica Resin. *Materials Today Communications*, 27, 102457.

55. Lee, J.-W., Cho, J. Y., Kim, M. J., Kim, J. H., Park, J. H., Jeong, S. Y., Seo, S. H., Lee, G.-W., Jeong, H. J., & Han, J. T. (2021). Synthesis of silver nanoparticles

embedded with single-walled carbon nanotubes for printable elastic electrodes and sensors with high stability. *Scientific Reports*, 11(1), 1–10.

56. Legube, B., & Leitner, N. K. V. (1999). Catalytic ozonation: A promising advanced oxidation technology for water treatment. *Catalysis Today*, 53(1), 61–72.

57. Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. *Biotechnology Research and Innovation*, 3(2), 275–290.

58. Liu, Y., Li, C., Bao, J., Wang, X., Yu, W., & Shao, L. (2022a). Degradation of azo dyes with different functional groups in simulated wastewater by electrocoagulation. *Water*, 14(1), 123.

59. Liu, Y., Li, C., Bao, J., Wang, X., Yu, W., & Shao, L. (2022b). Degradation of azo dyes with different functional groups in simulated wastewater by electrocoagulation. *Water*, 14(1), 123.

60. Ma, J., Wang, R., Wang, X., Zhang, H., Zhu, B., Lian, L., & Lou, D. (2019a). Drinking water treatment by stepwise flocculation using polysilicate aluminum magnesium and cationic polyacrylamide. *Journal of Environmental Chemical Engineering*, 7(3), 103049.

61. Ma, J., Wang, R., Wang, X., Zhang, H., Zhu, B., Lian, L., & Lou, D. (2019b). Drinking water treatment by stepwise flocculation using polysilicate aluminum magnesium and cationic polyacrylamide. *Journal of Environmental Chemical Engineering*, 7(3), 103049.

62. Ma, Y., Zhai, X., & Liu, J. (2020). Synthesis of hexagonal-phase indium tin oxide nanoparticles by deionized water and glycerol binary solvothermal method and their resistivity. *Journal of Materials Science*, 55(9), 3860–3870.

63. Mujumdar, N., de la Peña, A. M., & Campiglia, A. D. (2019). Classification of pre-dyed textile fibers exposed to weathering and photodegradation by non-destructive excitation-emission fluorescence spectroscopy paired with discriminant unfolded-partial least squares. *Forensic Chemistry*, 12, 25–32.

64. Mumbi, A. W., & Watanabe, T. (2021). Willingness to Pay and Participate in Improved Water Quality by Lay People and Factory Workers: A Case Study of River Sosiani, Eldoret Municipality, Kenya. *Sustainability*, 13(4), 1934.

65. Mustroph, H., & Towns, A. (2021). Indophenol and related dyes. *Physical Sciences Reviews*.

66. Nagia, F. A., & El-Mohamedy, R. S. R. (2007). Dyeing of wool with natural anthraquinone dyes from *Fusarium oxysporum*. *Dyes and Pigments*, 75(3), 550–555.

67. Nardino, V., Guzzi, D., Lastri, C., Palombi, L., Coluccia, G., Magli, E., Labate, D., & Raimondi, V. (2023). Compressive Sensing Imaging Spectrometer for UV-Vis Stellar Spectroscopy: Instrumental Concept and Performance Analysis. *Sensors*, 23(4), 2269.

68. Nasrollahi, N., Ghalamchi, L., Vatanpour, V., & Khataee, A. (2021). Photocatalytic-membrane technology: A critical review for membrane fouling mitigation. *Journal of Industrial and Engineering Chemistry*, 93, 101–116.

69. Nawabjohn, M. S., Sivaprakasam, P., Anandasadagopan, S. K., Begum, A. A., & Pandurangan, A. K. (2021). Green synthesis and characterisation of silver nanoparticles using Cassia tora seed extract and investigation of antibacterial potential. *Applied Biochemistry and Biotechnology*, 1–15.

70. Nawarkar, C. J., & Salkar, V. D. (2019). Solar powered electrocoagulation system for municipal wastewater treatment. *Fuel*, 237, 222–226.

71. Neves, C. V., Scheufele, F. B., Nardino, A. P., Vieira, M. G. A., da Silva, M. G. C., Módenes, A. N., & Borba, C. E. (2018). Phenomenological modeling of reactive dye adsorption onto fish scales surface in the presence of electrolyte and surfactant mixtures. *Environmental Technology*, 39(19), 2467–2483.

72. Nicolaisen, B. (2003). Developments in membrane technology for water treatment. *Desalination*, 153(1–3), 355–360.

73. Noël, S., Léger, B., Ponchel, A., Sadjadi, S., & Monflier, E. (2021). Cyclodextrins as multitask agents for metal nano-heterogeneous catalysis: A review. *Environmental Chemistry Letters*, 19(6), 4327–4348.

74. Omrani, N., & Nezamzadeh-Ejhieh, A. (2020). A comprehensive study on the mechanism pathways and scavenging agents in the photocatalytic activity of BiVO₄/WO₃ nano-composite. *Journal of Water Process Engineering*, 33, 101094.

75. Osemba, M., Muriuki-Hutchins, M., Karenga, S., & Keru, G. (2024). Chitosan Coupled Silver Nanoparticles Electrocatalyst Synthesis and Characterization. *International Journal of Pure and Applied Chemistry*, 2(1), 1–12.

76. Osemba, M. O. (2019). *Electrochemical Degradation and Chemical Assessment of Azo Dyes in the Textile Waste Water* [PhD Thesis, Pwani University]. <https://elibrary.pu.ac.ke/handle/123456789/826>

77. Osemba, M. O., Muriuki-Hutchins, M., Karenga, S., & Keru, G. (2024). Production of Chitosan from Crab Shells. *International Journal of Advanced Research*, 7(1), 244–250.

78. Osemba, M. O., Ojwang, L., & Maghanga, J. (2024). Electrochemical Color Removal of Azo Dyes Using Boron-Doped Diamond Electrodes and Silver Nanoparticles as Electrocatalyst. *International Journal of Advanced Research*, 7(1), 251–265.

79. Othmani, B., Gamelas, J. A., Rasteiro, M. G., & Khadhraoui, M. (2020). Characterization of two cactus formulation-based flocculants and investigation on their flocculating ability for cationic and anionic dyes removal. *Polymers*, 12(9), 1964.

80. Oyetade, J. A., Machunda, R. L., & Hilonga, A. (2022). Photocatalytic degradation of azo dyes in textile wastewater by Polyaniline composite catalyst-a review. *Scientific African*, e01305.

81. Qumar, U., Hassan, J., Naz, S., Haider, A., Raza, A., Ul-Hamid, A., Haider, J., Shahzadi, I., Ahmad, I., & Ikram, M. (2021). Silver decorated 2D nanosheets of GO

and MoS₂ serve as nanocatalyst for water treatment and antimicrobial applications as ascertained with molecular docking evaluation. *Nanotechnology*, 32(25), 255704.

82. Rachtanapun, P., Klunklin, W., Jantrawut, P., Jantanasakulwong, K., Phimolsiripol, Y., Seesuriyachan, P., Leksawasdi, N., Chaiyaso, T., Ruksiriwanich, W., & Phongthai, S. (2021). Characterization of chitosan film incorporated with curcumin extract. *Polymers*, 13(6), 963.

83. Rafaëly, L., Héron, S., Nowik, W., & Tchapla, A. (2008). Optimisation of ESI-MS detection for the HPLC of anthraquinone dyes. *Dyes and Pigments*, 77(1), 191–203.

84. Rahmani, A. R., Gilan, R. A., Asgari, G., Leili, M., & Dargahi, A. (2022). Enhanced degradation of Rhodamine B dye by Fenton/peracetic acid and photo-Fenton/peracetic acid processes. *International Journal of Chemical Reactor Engineering*, 20(12), 1251–1260.

85. Tucker, H. H. (1971). The coloring of human hair with semipermanent dyes. *J. Soc. Cosmet. Chem*, 22, 379–398.

86. Türgay, O., Ersöz, G., Atalay, S., Forss, J., & Welander, U. (2011). The treatment of azo dyes found in textile industry wastewater by anaerobic biological method and chemical oxidation. *Separation and Purification Technology*, 79(1), 26–33.

87. Ullah, F., Ahmad, M., Zafar, M., Parveen, B., Ashfaq, S., Bahadur, S., Safdar, Q., Safdar, L. B., Alam, F., & Luqman, M. (2022). Pollen morphology and its taxonomic potential in some selected taxa of Caesalpiniaceae observed under light microscopy and scanning electron microscopy. *Microscopy Research and Technique*, 85(4), 1410–1420.

88. Valand, R., Tanna, S., Lawson, G., & Bengtström, L. (2020). A review of Fourier Transform Infrared (FTIR) spectroscopy used in food adulteration and authenticity investigations. *Food Additives & Contaminants: Part A*, 37(1), 19–38.

89. Van Tran, V., Park, D., & Lee, Y.-C. (2018). Hydrogel applications for adsorption of contaminants in water and wastewater treatment. *Environmental Science and Pollution Research*, 25(25), 24569–24599.

90. Veerasingam, S., Ranjani, M., Venkatachalapathy, R., Bagaev, A., Mukhanov, V., Litvinyuk, D., Mugilarasan, M., Gurumoorthi, K., Guganathan, L., & Aboobacker, V. M. (2021). Contributions of Fourier transform infrared spectroscopy in microplastic pollution research: A review. *Critical Reviews in Environmental Science and Technology*, 51(22), 2681–2743.

91. Velusamy, S., Roy, A., Sundaram, S., & Kumar Mallick, T. (2021a). A review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater treatment. *The Chemical Record*, 21(7), 1570–1610.

92. Velusamy, S., Roy, A., Sundaram, S., & Kumar Mallick, T. (2021b). A review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater treatment. *The Chemical Record*, 21(7), 1570–1610.

93. Venkatadri, R., & Peters, R. W. (1993). Chemical oxidation technologies: Ultraviolet light/hydrogen peroxide, Fenton's reagent, and titanium dioxide-assisted photocatalysis. *Hazardous Waste and Hazardous Materials*, 10(2), 107–149.

94. Veréb, G., Gayır, V. E., Santos, E. N., Fazekas, Á., Kertész, S., Hodúr, C., & László, Z. (2019a). Purification of real car wash wastewater with complex coagulation/flocculation methods using polyaluminum chloride, polyelectrolyte, clay mineral and cationic surfactant. *Water Science and Technology*, 80(10), 1902–1909.

95. Veréb, G., Gayır, V. E., Santos, E. N., Fazekas, Á., Kertész, S., Hodúr, C., & László, Z. (2019b). Purification of real car wash wastewater with complex coagulation/flocculation methods using polyaluminum chloride, polyelectrolyte, clay mineral and cationic surfactant. *Water Science and Technology*, 80(10), 1902–1909.

96. Vikal, S., Gautam, Y. K., Meena, S., Parewa, V., Kumar, A., Kumar, A., Meena, S., Kumar, S., & Singh, B. P. (2023). Surface functionalized silver-doped ZnO nanocatalyst: A sustainable cooperative catalytic, photocatalytic and antibacterial platform for waste treatment. *Nanoscale Advances*, 5(3), 805–819.

97. Xu, Y., Wang, C., Huang, Y., & Fu, J. (2021). Recent advances in electrocatalysts for neutral and large-current-density water electrolysis. *Nano Energy*, 80, 105545.

98. Zeng, C., Kim, S., Chen, Y., Fu, Y., Bao, J., Xu, Z., & Wang, W. (2023). In Situ Characterization of Kinetics, Mass Transfer, and Active Electrode Surface Area for Vanadium Redox Flow Batteries. *Journal of The Electrochemical Society*, 170(3), 030507.

99. Zhang, J., Wang, L., Tan, W., Li, Q., Dong, F., & Guo, Z. (2022). Preparation of chitosan-rosmarinic acid derivatives with enhanced antioxidant and anti-inflammatory activities. *Carbohydrate Polymers*, 296, 119943.

100. Zhang, Q., Xie, X., Xu, D., Hong, R., Wu, J., Zeng, X., Liu, N., & Liu, J. (2021). Accelerated azo dye biodegradation and detoxification by *Pseudomonas aeruginosa* DDMZ1-2 via fructose co-metabolism. *Environmental Technology & Innovation*, 24, 101878.

101. Zhang, R., Peng, W., Huang, Y., Gautam, S., Wang, J., Mechref, Y., & Tang, H. (2022). A Reciprocal Best-hit Approach to Characterize Isomeric N-Glycans Using Tandem Mass Spectrometry. *Analytical Chemistry*.

102. Zhang, Y., Wang, Y.-T., Kang, X.-X., Ge, M., Feng, H.-Y., Han, J., Wang, D.-H., & Zhao, D.-Z. (2018). Azobenzene disperse dye-based colorimetric probe for naked eye detection of Cu²⁺ in aqueous media: Spectral properties, theoretical insights, and applications. *Journal of Photochemistry and Photobiology A: Chemistry*, 356, 652–660.

103. Zhao, B., Bian, J., Rao, M., She, X., Lou, Y., Cai, J., & Ma, W. (2022). A dilute-and-shoot liquid chromatography–tandem mass spectrometry method for urinary 18-hydroxycortisol quantification and its application in establishing reference intervals. *Journal of Clinical Laboratory Analysis*, e24580.

104. Zhou, Z., Mukherjee, S., Hou, S., Li, W., Elsner, M., & Fischer, R. A. (2021). Porphyrinic MOF film for multifaceted electrochemical sensing. *Angewandte Chemie International Edition*, 60(37), 20551–20557.

105. Zhuang, J., Li, M., Pu, Y., Ragauskas, A. J., & Yoo, C. G. (2020). Observation of potential contaminants in processed biomass using fourier transform infrared spectroscopy. *Applied Sciences*, 10(12), 4345.

106. Zhuo, Q., Xu, X., Xie, S., Ren, X., Chen, Z., Yang, B., Li, Y., & Niu, J. (2022). Electro-oxidation of Ni (II)-citrate complexes at BDD electrode and simultaneous recovery of metallic nickel by electrodeposition. *Journal of Environmental Sciences*, 116, 103–113.

107. Zor, E. (2018). Silver nanoparticles-embedded nanopaper as a colorimetric chiral sensing platform. *Talanta*, 184, 149–155.