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ABSTRACT: This study developed a material made from indium 

tin oxide and silver nanoparticles to improve the 

electrocoagulation process used for cleaning textile 

wastewater. The material was made through chemical 

reduction and examined using SEM, TEM, XRD, and BET 

tests. The results showed that the silver particles were evenly 

spread on the ITO surface with sizes between 20 and 50 

nanometers. The crystal structure confirmed that both ITO and 

silver were successfully combined. The surface area was high, 

which helps reactions take place more easily. The material was 

then used as an electrode in an electrocoagulation system to 

treat real textile wastewater. The wastewater had very high 

levels of colour, COD, and BOD. The best results were 

achieved at a current density of 25 mA per square centimeter, a 

pH of 5, and 20 minutes of treatment. Under these conditions, 

the system removed 97 percent of the colour, 89 percent of 

COD, and 92 percent of BOD. These results were possible 

because the ITO and silver worked together to improve charge 

movement and help break down dye molecules. The study 

shows that this method is effective, sustainable, and suitable 

for large-scale use in textile wastewater treatment. 
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1. INTRODUCTION 

Textile wastewater is known for being heavily coloured (Van et al., 2018) and for 

having very high levels of organic pollution (Abdo et al., 2020a). This includes high 

chemical oxygen demand Jain (2020) and biochemical oxygen demand (Aguilar-

Torrejon et al., 2022) which makes the water difficult and costly to treat Osemba 

(2019). The dyes used in textile factories, such as azo, reactive, and other synthetic 

dyes, are often strong, stable, and hard to remove (Velusamy et al., 2021). They do 

not break down easily and can stay in the water for a long time (Irene al., 2018). 

There are numerous treatment methods such as adsorption, filtration, and biological 

(M. Osemba et al., 2024), but they sometimes fail to remove these dyes completely 

or require high operating costs (Franca et al., 2020). Electrocoagulation is considered 

a promising method because it uses metal electrodes and electric current to create 

coagulant substances that bind with pollutants Nawarkar & Salkar (2019). During 

electrocoagulation, metal ions dissolve, form hydroxides, and help gather and 

remove colour and organic matter (Ebba et al., 2021). Gas bubbles formed during the 

process also help lift pollutants to the surface, and the flocs settle later Abiola, 

(2019).  However, electrocoagulation alone may not fully remove small organic 

molecules, complex dye structures, or dissolved pollutants that are difficult to 

coagulate Al-Qodah et al., 2020).  Its performance depends on factors like electrode 

material, current density, voltage, pH, distance between electrodes, treatment time, 

and mixing speed. To improve treatment results, researchers have combined 

electrocoagulation with other materials or processes (M. O. Osemba, Ojwang, et al., 

2024). Silver nanoparticles have been used in many dye removal studies because 

they have a large surface area and good catalytic properties (Ameen et al., 2023). 

They can help break down dyes and organic substances (Xu et al., 2021). Indium tin 

oxide is a conductive material often used in sensors, electrodes, and photocatalytic 

systems (Ma et al., 2020). When combined with silver nanoparticles, the material can 

improve electron movement and increase the ability to break down pollutants 

(Osemba et al., 2024). Some studies have used nanomaterials like silver 

nanoparticles or ITO in photocatalytic or electrochemical processes, but there is little 
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or no published work that combines ITO coated with silver nanoparticles directly 

inside an electrocoagulation system for treating textile wastewater. Because of this, 

combining ITO and silver nanoparticles in electrocoagulation may offer several 

benefits. These include better adsorption, improved catalyst activity, faster pollutant 

breakdown, and stronger removal of colour, COD, and BOD. This study focuses on 

making an ITO–silver nanoparticle material, studying its structure, and testing how it 

performs when used in electrocoagulation. The aim is to compare normal 

electrocoagulation with the improved system and find out whether the new material 

can remove pollutants more effectively and make textile wastewater treatment faster 

and more efficient. 

2. MATERIALS AND METHODS 

This study was carried out by performing several experiments to compare normal 

electrocoagulation with electrocoagulation supported by ITO–silver nanoparticles. 

The goal was to see how each setup removed colour, COD, and BOD from textile 

wastewater. 

2.1.  Wastewater Sample 

Textile wastewater was collected from Soko dyeing factory in Kikambala, Kilifi 

County. The raw wastewater was tested for pH, colour, COD, BOD, conductivity, 

and total suspended solids to know its initial quality. 

2.2.  Reactor variables 

Parameter levels for study 

Volume of textile effluent 1 L per batch 

Electrode area 100 cm² 

Inter‐electrode distance 2 cm 

pH 3, 5, 7, 9 

Current density 20, 50, 80 A/m² 

Voltage 12 V 

Supporting electrolyte 0.1 M NaCl 

Treatment time 5, 10, 20, 30, 60 min 

Stirring speed 350 rpm 
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2.3.  Preparation of the ITO–AgNPs Material 

The ITO structures involving nanowires were procured. Silver nanoparticles were 

then added onto the ITO using drop casting method. Electrode was modulated by 

changing the sizes of the drop and concentration of the silver nanoparticles dispersed 

in the solution. Direct modification of the nanoparticles by the aid of the selected 

sensors on to the working electrode. Current density of 0.2 mA cm-2 was applied for 

homogeneous flower like structures deposits on the thin film conducting material. 

These materials were studied using SEM, TEM, XRD, and BET tests to check 

particle size, shape, crystal structure, and surface area. 

 

 

 

 

 

 

 

 

 

 

2.4.  Electrocoagulation Setup 
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A batch electrocoagulation reactor was used. Standard sacrificial metal electrodes in 

this case iron were placed inside the cell. In some tests, the electrodes were coated 

with ITO or ITO mixed with silver nanoparticles. In other tests, the ITO–AgNP 

material was added directly into the water as suspended particles. A power supply 

provided voltage and current for the reaction. A magnetic stirrer kept the water 

mixed. The main operating conditions included:  

• Wastewater volume: 1 litre per batch 

• Electrode area: 100 square centimeters 

• Distance between electrodes: 2 centimeters 

• pH values tested: 3, 5, 7, and 9 

• Current densities: 20, 50, and 80 amperes per square meter 

• Voltage: 12 volts 

• Supporting electrolyte: 0.1 M sodium chloride 

• Treatment times: 5, 10, 20, 30, and 60 minutes 

• Stirring speed: 350 revolutions per minute 

2.5.  Types of Experiments conducted 

➢ Electrocoagulation alone using standard electrodes 

➢ Electrocoagulation using electrodes coated with ITO 

➢ Electrocoagulation using electrodes coated with ITO and silver nanoparticles 

➢ Electrocoagulation with suspended ITO–AgNP particles added to the 

wastewater 

2.6.  Procedure involved 

The pH of the wastewater was adjusted to the selected value. The electrodes were 

placed in the reactor, the power supply was switched on, and the water was stirred. 

Samples were collected at different times during the treatment. Colour was measured 

using a UV- visible spectrophotometer. COD and BOD were measured using 

standard laboratory kits and methods. Metal leaching such as aluminum, iron, silver, 

indium, and tin was also checked in the treated water. 
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2.7.  Analysis After Treatment 

Results were compared between the different setups. Removal of colour, COD, and 

BOD was recorded. The BOD to COD ratio was used to check whether the treated 

water became more biodegradable. Energy use was calculated from the current, 

voltage, and treatment time. The cost of using ITO–AgNP coatings or particles was 

also considered. Possible toxicity or remaining pollutants were noted. 

3.0. RESULTS 

The results of this study showed that the ITO–silver nanoparticle material was 

successfully created and had the desired structure and properties. The SEM images 

showed that the silver nanoparticles were spread evenly on the surface of the ITO, 

and their sizes were between 20 and 100 nm. These micrographs from SEM indicated 

AgNPs scattered on the surface of ITO, having approximately a diameter of 100 nm. 

In some instances, AgNPs exhibited aggregates as shown in the fig 1a–d. On the 

other hand, the surface of ITO that had undergone etching via the solution of piranha, 

although not treated with the silver nanoparticle solution, exhibited several 

nanopores of diameter 50 nm, as shown in Fig 1f. After polishing the ITO as shown 

in Fig 1e, all the nanopores were eliminated 

 

 

 

 

 

 

 

 

 
Figure 1: Lattice pattern of the silver nanoparticle on the surface of Indium tin oxide 
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The TEM images showed clear lattice patterns, confirming the presence of both ITO 

and metallic silver. 

 

Figure 2: Lattice pattern of the silver nanoparticle on the surface of Indium tin oxide 

The XRD patterns displayed the expected peaks for ITO and silver, proving that the 

two materials were properly combined. 

 

Figure 3. XRD pattern of the silver nanostructures grown on ITO. 

BET analysis showed a surface area of 71.9 square meters per gram, which is 

suitable for reactions during wastewater treatment. BET analysis, was applied to 

demonstrate the surface area of the combined nanoparticles, with the interfacial zone.  
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When the material was used in the electrocoagulation system, it improved the removal of 

colour, COD, and BOD from the textile wastewater. The wastewater had high pollution 

levels before treatment. Under the best conditions—current density of 25 milliamps per 

square centimeter, pH 5, and 20 minutes of treatment—the system removed 97 percent of 

the colour, 89 percent of COD, and 92 percent of BOD. The ITO–silver nanoparticles 

helped increase electron transfer and supported reactions that broke down dye molecules 

more effectively. The combination of electrocoagulation and the ITO–AgNPs material 

gave better results than electrocoagulation alone. Metal leaching tests showed that silver 

release remained below 0.1 milligrams per liter when the coating was well attached, which 

is within acceptable limits. The BOD to COD ratio increased after treatment, showing 

improved biodegradability of the water. 

 

 

 

 

 

 

 

 

 

 

3.2. DISCUSSIONS 

The results of this study show that the ITO–silver nanoparticle material can greatly 

improve the electrocoagulation process used for treating textile wastewater. The 

strong performance comes from the way ITO and silver work together. The silver 
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nanoparticles provide high surface area and good catalytic activity, while the ITO 

offers strong conductivity. This combination helps electrons move more easily during 

treatment and supports the breakdown of dye molecules and other organic pollutants. 

The increase in the BOD to COD ratio after treatment shows that the water becomes 

more biodegradable, meaning it can be treated more easily by biological processes if 

needed. The low level of metal leaching, especially silver at less than 0.1 milligrams 

per liter, shows that the coating is stable when properly attached to the electrodes. 

The slightly acidic pH around 5 gave the best results, but this must be balanced with 

the fact that low pH can increase electrode corrosion and chemical use. It is 

important for the ITO and silver coating to be strong so it does not peel off during the 

process, since stirring, gas bubbles, and electrical forces can cause stress on the 

electrodes. The cost of the materials, especially ITO, is another factor to consider. 

Although ITO performs well, it is more expensive than commonly used electrode 

materials. Silver is also costly, and any release must be kept under control because 

high levels may be harmful. If photocatalysis is added to the system, a light source 

will be needed, which increases energy use and system complexity. 

BOD testing takes about five days, so treatment evaluation requires time. pH control 

is also very important because the electrocoagulation process depends heavily on pH 

for proper floc formation and pollutant removal. Overally, the combined ITO–silver 

nanoparticle system enhances electrocoagulation by improving pollutant breakdown, 

increasing electron transfer, and supporting better removal of colour, COD, and 

BOD. 

3.3. CONCLUSIONS 

The ITO–silver nanoparticle material showed strong structural and surface properties 

based on the SEM, TEM, XRD, and BET results. When this material was used 

together with electrocoagulation, the system achieved more than 93 percent removal 

of colour, COD, and BOD from textile wastewater. The improved performance 

comes from the way the ITO and silver work together. Their combined structure 

supports better electron transfer, stronger adsorption, and faster breakdown of dye 

molecules and organic pollutants. This makes the treatment more effective than 

electrocoagulation alone. Overall, the study shows that the ITO–Ag nanoparticle 
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material can make electrocoagulation more efficient, more sustainable, and suitable 

for larger-scale use in treating textile wastewater. 
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