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ABSTRACT: Sudden cardiac arrest remains a leading cause of 

mortality worldwide, largely due to delayed detection and 

intervention. Most existing monitoring systems identify 

cardiac arrest only after circulatory collapse has already 

occurred, significantly limiting the effectiveness of emergency 

response. This study presents the design and numerical 

validation of an AI-based early cardiac arrest detection system 

capable of predicting imminent cardiac arrest prior to its onset. 

The proposed framework integrates non-invasive physiological 

sensing with a hybrid physics–artificial intelligence approach. 

Blood flow dynamics are modeled using the incompressible 

Navier–Stokes equations, while oxygen transport is 

represented by a convection–diffusion–reaction model to 

capture the progressive development of hypoxia under pre-

arrest conditions. Numerical simulations are conducted to 

investigate hemodynamic instability and oxygen depletion 

patterns associated with declining cardiac output. Key outputs 

from the numerical model, including velocity fields, oxygen 

concentration gradients, and a derived hypoxia index, are 

combined with physiological signals and processed by a 

machine learning–based prediction engine. The results  
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demonstrate that the proposed system successfully identifies critical pre-arrest 

signatures and provides early warning within a clinically meaningful time window. 

This work establishes a robust foundation for predictive cardiac monitoring and 

highlights the potential of physics-informed AI to improve survival outcomes, 

enhance emergency medical decision-making, and support the future development of 

intelligent, real-time cardiac arrest detection devices. 

Keywords: Cardiac arrest; Blood flow; Oxygen transport; Numerical simulation; 

Navier–Stokes equations; Convection–diffusion.  

1. Background Information 

Sudden cardiac arrest (SCA) is a critical medical emergency characterized by the 

abrupt loss of effective cardiac function, leading to the cessation of blood circulation 

and oxygen delivery to vital organs. It remains one of the leading causes of death 

globally, with survival rates strongly dependent on the speed of detection and 

intervention. Brain injury can begin within minutes of circulatory failure, 

underscoring the importance of early identification and rapid response. 

Current cardiac monitoring technologies, including electrocardiography (ECG), pulse 

oximetry, and blood pressure monitors, are widely used in hospitals, ambulances, and 

wearable devices. However, these systems are predominantly reactive, detecting 

cardiac arrest only after significant physiological collapse has already occurred. 

Alarms are often triggered when arrhythmias, oxygen saturation drops, or 

hemodynamic failure are already severe, leaving a narrow window for effective 

resuscitation. Additionally, high false-alarm rates reduce clinical trust and contribute 

to alarm fatigue, particularly in intensive care environments. 

Physiologically, cardiac arrest is not an instantaneous event but rather the final stage 

of a progressive deterioration process involving declining cardiac output, unstable 

electrical activity, impaired blood flow, and rapid oxygen depletion in critical tissues. 

These pre-arrest dynamics manifest as subtle but measurable changes in blood 

velocity, pressure gradients, oxygen transport, and heart rhythm variability. 

Conventional monitoring systems rarely exploit this coupled, multiscale 
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physiological behavior, focusing instead on isolated signals rather than the 

underlying physical processes governing circulation and oxygen delivery. 

Advances in numerical modeling and computational fluid dynamics (CFD) have 

enabled detailed simulation of blood flow and mass transport within the 

cardiovascular system. Governing equations such as the Navier–Stokes equations for 

hemodynamics and convection–diffusion–reaction equations for oxygen transport 

provide a rigorous framework for quantifying circulatory and hypoxic states under 

both normal and pathological conditions. These models offer valuable insights into 

the mechanisms leading to organ ischemia during reduced cardiac output and 

circulatory collapse, yet they are rarely integrated into real-time clinical monitoring 

systems. 

In parallel, recent developments in artificial intelligence (AI) and machine 

learning have demonstrated significant potential in medical signal analysis, 

particularly for pattern recognition and time-series prediction. Deep learning 

architectures such as recurrent neural networks and transformers are capable of 

identifying complex temporal dependencies in physiological data. However, purely 

data-driven models often lack interpretability and robustness, especially when trained 

on limited or noisy clinical datasets, which restricts their reliability in safety-critical 

applications such as cardiac arrest prediction. 

The integration of physics-based numerical models with AI, often referred to as 

hybrid or physics-informed intelligence, offers a promising pathway to overcome 

these limitations. By embedding fundamental physiological laws into the prediction 

framework, such systems can improve generalization, reduce false alarms, and 

provide clinically meaningful indicators such as oxygen depletion rates and 

hemodynamic instability metrics. Despite this potential, the application of hybrid 

physics–AI approaches for early prediction of cardiac arrest remains largely 

unexplored. 

Therefore, there exists a critical need for an intelligent, predictive system that 

combines physiological sensing, numerical modeling of blood flow and oxygen 

transport, and AI-based decision-making to detect cardiac arrest before its onset. 
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Addressing this gap could significantly improve emergency response, enhance 

patient survival, and contribute to the development of next-generation smart medical 

devices for both clinical and remote healthcare settings. 

2. Problem Statement 

Sudden cardiac arrest (SCA) is a life-threatening condition that claims millions of 

lives worldwide each year. Current monitoring and diagnostic systems, such as 

electrocardiography (ECG), pulse oximetry, and blood pressure monitors, are 

primarily reactive, detecting cardiac arrest only after significant circulatory collapse 

has occurred. This delay severely limits the effectiveness of resuscitation efforts and 

contributes to high mortality rates. 

Moreover, existing devices often rely on isolated physiological signals, failing to 

capture the complex, coupled dynamics of blood flow, oxygen transport, and 

electrical activity that precede cardiac arrest. This results in high false-alarm rates, 

poor predictive capability, and limited clinical utility. While numerical simulations 

and computational models can describe hemodynamics and oxygen depletion, these 

are rarely integrated with real-time monitoring or predictive systems. Likewise, 

purely data-driven artificial intelligence (AI) approaches can identify patterns in 

physiological data but often lack interpretability and reliability, particularly in safety-

critical scenarios. 

Therefore, there is a critical need for an intelligent, predictive system that combines 

physiological sensing, numerical modeling of cardiovascular dynamics, and AI-

based analysis to detect cardiac arrest before its onset. Such a system would 

enable early intervention, reduce mortality, and provide a foundation for the 

development of next-generation, life-saving medical devices. 

3. Justification 

Developing a predictive system that integrates numerical cardiovascular modeling 

with AI analysis addresses this critical gap and offers several compelling benefits: 
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1. Clinical Impact: Early prediction of cardiac arrest can provide clinicians and 

emergency responders with a critical time window for intervention, significantly 

improving patient survival rates. 

2. Technical Innovation: Combining physics-based simulations with AI creates a 

hybrid system that is more accurate, interpretable, and robust than existing 

devices or purely AI-based approaches. 

3. Healthcare Accessibility: Such a system can be implemented as a wearable 

device or bedside monitor, making it useful in hospitals, ambulances, and remote 

healthcare settings. 

4. Scientific Contribution: Integrating hemodynamics, oxygen transport modeling, 

and AI-based risk assessment contributes novel methodology to the fields of 

biomedical engineering, applied mathematics, and computational physiology. 

5. Economic and Societal Benefits: Early detection reduces long-term treatment 

costs associated with organ damage from hypoxia, decreases ICU dependency, and 

enhances overall healthcare efficiency. 

In summary, addressing this research gap is highly relevant, timely, and impactful, 

as it combines scientific innovation with real-world clinical applications, potentially 

saving lives and advancing predictive healthcare technologies. 

4. Research Objectives 

4.1 General Objective 

To develop a predictive system that combines numerical simulations of blood flow 

and oxygen transport with AI-driven analysis for early detection of cardiac arrest. 

4.2 Specific Objectives 

1. To model cardiovascular dynamics and oxygen transport under pre-arrest 

conditions 

2. To numerically simulate hemodynamic instability and tissue hypoxia patterns 
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3. To design and implement an AI-based prediction engine 

4. To integrate the numerical model and AI engine into a prototype detection system 

5. To validate the predictive system through numerical simulations and benchmark 

datasets 

5. Literature Review 

Divya et al. (2024) conducted a study on early cardiac arrest prediction using 

machine learning techniques. Their research employed recurrent neural networks 

(RNNs to analyze temporal clinical data, capturing subtle patterns in vital signs and 

hemodynamic measurements that precede cardiac arrest. The methodology allowed 

for sequential modeling of patient data, enabling detection of pre-arrest physiological 

trends that traditional monitoring systems often miss. The study found that the RNN 

model could accurately predict cardiac arrest several hours before clinical onset, 

providing a valuable time window for intervention. Divya et al. emphasized the 

potential of deep learning models in creating early warning systems, particularly 

when integrating multiple physiological signals. The research also highlighted the 

importance of temporal analysis, showing that patterns in heart rate, oxygen 

saturation, and blood pressure evolve predictably before arrest events. By combining 

clinical insights with advanced AI techniques, the study laid the groundwork for 

hybrid models that incorporate both numerical simulations of cardiovascular 

dynamics and machine learning. These findings suggest a transformative potential 

for AI in critical care monitoring and early intervention. 

Chen et al. (2024) Developed Deep EDICAS, a deep learning-based scoring system 

for early cardiac arrest prediction in emergency department patients. Their 

methodology integrated time-series physiological data with tabular clinical features, 

allowing the model to process both static and dynamic patient information. The study 

demonstrated that Deep EDICAS outperformed traditional risk scoring systems in 

identifying patients at imminent risk of cardiac arrest. Chen et al. highlighted that 

integrating multiple data streams using deep learning can significantly enhance 

predictive performance in emergency settings. The research also emphasized real-

time applicability, showing that AI models could provide actionable alerts to 
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clinicians before deterioration occurs. The study underscores the value of advanced 

machine learning in emergency care and suggests potential for broader 

implementation in hospital monitoring systems. Moreover, the approach provides a 

foundation for integrating physiological simulations with AI, potentially improving 

accuracy and reliability in pre-arrest detection. 

Smith et al. (2024) conducted a systematic review on the use of AI in prehospital 

emergency care, focusing specifically on out-of-hospital cardiac arrest prediction. 

Their study analyzed various machine learning approaches, including supervised and 

unsupervised models applied to historical and real-time patient data. Smith et al. 

found that AI significantly improved early detection, risk stratification, and triage 

compared to conventional scoring systems. However, the review also noted 

challenges in deploying predictive models in real-world prehospital scenarios, 

including limited dataset availability and difficulties integrating AI into emergency 

workflows. The authors emphasized the importance of developing robust, 

interpretable, and clinically implementable AI models to bridge the gap between 

research and practice. This review provides a comprehensive understanding of 

current AI capabilities and highlights the unmet need for reliable predictive systems 

that can function in rapid-response situations. 

Alamgir et al. (2022) performed a scoping review to evaluate machine learning 

approaches for predicting cardiac arrest. The study revealed that neural networks and 

deep learning models were the most commonly used methodologies, yet many 

studies suffered from small datasets and insufficient clinical validation. Alamgir et 

al. noted that these limitations reduced the generalizability of the models across 

diverse patient populations. The review stressed the need for large-scale, multi-center 

datasets that capture variations in physiology, demographics, and comorbidities. 

Additionally, the authors highlighted that combining AI with clinical decision 

support and physiological modeling could enhance predictive accuracy and clinical 

relevance. This research underscores the current gap in the literature: while AI shows 

promise, its translation into reliable clinical tools remains limited without rigorous 

validation. 
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Kaur et al. (2023) reviewed the application of medical expert systems and ensemble 

learning approaches in cardiac arrest prediction. Their analysis demonstrated that 

combining multiple classifiers, including deep learning models, could improve 

predictive accuracy by leveraging complementary strengths. However, Kaur et al. 

also identified critical limitations, such as inadequate preprocessing, lack of external 

validation, and inconsistent feature selection across studies. The review emphasized 

the importance of rigorous data preparation, feature engineering, and model 

evaluation to achieve reliable clinical predictions. Kaur et al. suggested that 

integrating AI with real-time monitoring systems could facilitate timely alerts, 

ultimately improving patient outcomes. Their findings provide a methodological 

roadmap for future research combining AI with patient-specific cardiovascular 

simulations. 

Lee et al. (2021) conducted a retrospective study on acute coronary syndrome 

patients to predict in-hospital cardiac arrest using machine learning algorithms, 

including XGBoost. The study utilized clinical parameters, laboratory tests, and vital 

signs to develop predictive models capable of identifying patients at high risk before 

clinical deterioration. Results showed that ML models significantly outperformed 

traditional risk scoring systems, providing earlier and more accurate predictions. Lee 

et al. concluded that integrating AI with routinely collected patient data could 

enhance predictive monitoring in hospital settings. The research highlights the 

feasibility of using machine learning for practical, real-time cardiac arrest detection 

and underscores the need for hybrid approaches combining data-driven models with 

physiological simulations for improved reliability. 

Patel et al. (2023) proposed a scoping review protocol focusing on in-hospital 

cardiac arrest prediction. The study highlighted that most predictive models rely on 

static patient features and isolated physiological measurements, which limits their 

accuracy. Patel et al. emphasized the importance of incorporating continuous 

temporal data and pathophysiological changes leading up to cardiac arrest. The 

protocol outlined strategies for integrating machine learning with real-time 

monitoring, creating more robust prediction frameworks. Patel et al. also stressed the 

need for large, representative datasets to ensure generalizability across diverse 
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clinical populations. The study underscores the critical gap in current research and 

supports the development of hybrid AI-physics predictive systems for pre-arrest 

detection. 

Rao et al. (2020) explored early cardiac arrest prediction using ECG signals, 

applying wavelet transforms and feature selection to preprocess the data. The study 

employed classifiers such as artificial neural networks (ANNs) and support vector 

machines (SVMs) to detect pre-arrest conditions. Rao et al. reported high predictive 

accuracy, demonstrating the importance of advanced signal processing in enhancing 

AI model performance. Their research highlighted that subtle changes in cardiac 

rhythm could be detected before clinical symptoms emerge, providing a valuable 

window for early intervention. The study also suggested that integrating 

physiological simulations with ML-based signal analysis could further improve 

prediction robustness and interpretability. 

Kim et al. (2019) developed the FAST-PACE model to predict cardiac arrest or 

respiratory failure using basic vital signs, including heart rate, blood pressure, and 

oxygen saturation. The AI model successfully predicted adverse events up to six 

hours in advance, outperforming conventional early warning scores. Kim et al. 

emphasized that even simple, non-invasive physiological data could be leveraged 

effectively when combined with machine learning algorithms. Their findings suggest 

that rapid, actionable predictions are feasible in real-world clinical environments, 

supporting the integration of AI-based early detection systems into standard 

monitoring workflows. 

Johnson et al. (2022) conducted a systematic meta-analysis on post-cardiac arrest 

outcome prediction using machine learning. Their study found that AI-based models 

generally outperformed traditional regression methods in predicting survival and 

neurological outcomes. However, Johnson et al. noted that proper handling of 

missing data, overfitting, and model validation remain critical for reliable clinical 

application. The meta-analysis reinforced the need for methodological rigor in 

developing predictive systems and highlighted the potential for combining machine 

learning with physiological modeling to enhance predictive performance. 
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Martinez et al. (2022) investigated pediatric cardiac arrest prediction using machine 

learning models applied to electronic health record data. The study demonstrated that 

AI algorithms could achieve high discrimination in predicting pre-arrest events in 

children, provided sufficient temporal and clinical features were included. Martinez 

et al. emphasized the importance of developing pediatric-specific models due to 

physiological differences and data scarcity. Their findings indicate that machine 

learning can be effective for early detection in pediatric populations, particularly 

when combined with continuous monitoring and hybrid modeling approaches. 

Zia et al. (2025) proposed a digital twin framework combining Efficient Net deep 

learning with patient-specific cardiovascular simulations to predict cardiac events. 

This hybrid approach allowed for personalized predictions by integrating mechanistic 

simulations with AI pattern recognition. Zia et al. found that the framework 

improved predictive accuracy and provided insights into patient-specific 

physiological responses. The study demonstrated the potential of combining 

numerical simulations and AI for early cardiac arrest detection, emphasizing 

interpretability, reliability, and clinical applicability in real-time monitoring systems. 

Hernandez et al. (2024) conducted computational fluid dynamics (CFD) simulations 

of the left ventricle to study hemodynamics under normal and pathological 

conditions. The study analyzed velocity distributions, flow patterns, and pressure 

gradients within cardiac chambers, providing mechanistic insights into pre-arrest 

physiology. Hernandez et al. concluded that understanding detailed cardiovascular 

flow dynamics is essential for designing predictive models that accurately capture 

pre-arrest changes. The research supports integrating CFD-based simulations with AI 

algorithms to create more physiologically accurate early warning systems. 

Wang et al. (2023) modeled cardiovascular function during extracorporeal membrane 

oxygenation (ECMO) to study hemodynamics and oxygen transport in severe cardiac 

failure. The computational simulations quantified changes in blood flow and tissue 

oxygenation, demonstrating the significance of patient-specific modeling. Wang et 

al. highlighted that numerical simulations can complement AI-based predictions by 

providing mechanistic context, allowing early detection systems to be more robust 

and reliable in critical care environments. 
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Nguyen et al. (2023) conducted a computational study to optimize CPR techniques 

using cardiovascular models under cardiac arrest conditions. The simulations 

evaluated pressure and flow rate variations during resuscitation, revealing optimal 

parameters for effective intervention. Nguyen et al. emphasized that modeling can 

inform both predictive and therapeutic strategies, illustrating the dual application of 

computational methods for pre-arrest detection and treatment optimization. 

Singh et al. (2022) applied machine learning to heart rate variability (HRV) signals 

from ICU patients to predict in-hospital cardiac arrest. By analyzing temporal 

features in HRV, the models successfully detected pre-arrest events several hours in 

advance. Singh et al. concluded that HRV provides valuable predictive information, 

supporting its integration into AI-based early warning systems. The study also 

highlighted the feasibility of non-invasive monitoring for continuous, real-time 

prediction in critical care. 

Patel et al. (2024) investigated the use of pulse wave analysis and machine learning 

to assess blood supply and oxygen saturation. The study demonstrated that non-

invasive signals could effectively indicate deteriorating cardiovascular function, 

making them suitable features for predictive models. Patel et al. emphasized that 

incorporating non-invasive monitoring with AI could provide continuous, patient-

specific assessment, facilitating timely clinical intervention before cardiac arrest 

occurs. 

Lopez et al. (2020) developed physics-driven machine learning models that 

combined physiological time-series data with predictive classifiers to estimate post-

cardiac arrest outcomes, including survival and neurological status. The hybrid 

approach outperformed purely data-driven models, highlighting the importance of 

integrating mechanistic physiological knowledge with AI for accurate and 

interpretable predictions. Lopez et al. concluded that such hybrid systems could 

enhance clinical decision-making and improve patient outcomes. 

Ahmed et al. (2023) explored the integration of expert systems and decision support 

tools with machine learning for early cardiac arrest detection. Their study 

emphasized that AI models alone often lack practical clinical usability and must be 
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incorporated into workflow-oriented platforms to be effective. Ahmed et al. 

demonstrated that combined systems could provide timely alerts and actionable 

insights, improving patient monitoring and early intervention. 

 Thompson et al. (2025) focused on explainable AI (XAI) models for cardiac arrest 

prediction to ensure clinical adoption. While predictive accuracy is important, 

Thompson et al. highlighted that models must also provide transparent and 

interpretable outputs for clinicians to make informed decisions. The study concluded 

that explain ability is crucial for real-world deployment, reinforcing that AI-based 

early warning systems must balance accuracy with interpretability to be successfully 

integrated into healthcare workflows. 

Although recent studies have demonstrated the potential of artificial intelligence in 

predicting cardiac arrest using machine learning models such as RNNs, CNNs, and 

ensemble approaches (Divya et al., 2024; Rao et al., 2020; Kim et al., 2019), several 

critical gaps remain. Most existing models are trained on limited datasets from single 

institutions, which reduces their accuracy and generalizability across diverse patient 

populations (Alamgir et al., 2022; Patel et al., 2023). 

Additionally, current predictive systems primarily rely on static or single-point 

measurements of vital signs rather than continuous temporal monitoring, limiting 

their ability to detect early physiological changes that precede cardiac arrest 

(Martinez et al., 2022; Patel et al., 2023). The integration of multi-modal data, such 

as ECG, hemodynamic parameters, oxygen saturation, and patient demographics, is 

still limited, even though combining these inputs could enhance predictive 

performance (Chen et al., 2024; Zia et al., 2025). 

Furthermore, while computational models and numerical simulations provide 

detailed insights into cardiovascular dynamics and oxygen transport (Hernandez et 

al., 2024; Wang et al., 2023), these physics-based approaches have not been fully 

integrated with AI models, resulting in predictive tools that lack physiological 

interpretability and clinical trustworthiness. 

Finally, there is a notable lack of real-time, patient-specific AI systems capable of 

continuous monitoring and immediate clinical alerts in ICU or prehospital settings 
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(Smith et al., 2024; Thompson et al., 2025). Existing models are often retrospective, 

offline, or limited to post-event analysis, which reduces their clinical utility. 

Therefore, the research gap lies in the absence of a comprehensive, real-time, AI-

driven early cardiac arrest detection system that combines continuous multi-modal 

patient monitoring, numerical simulations of cardiovascular dynamics, and 

explainable predictive modeling for accurate and clinically interpretable early 

warning. 

6. Methodology 

6.1 Assumptions 

In conducting this study, the following assumptions are made to ensure the 

feasibility, accuracy, and relevance of the predictive system: 

1. Blood Properties: 

• Blood is assumed to be an incompressible Newtonian fluid for the 

purposes of numerical modeling. 

• Density and dynamic viscosity are considered constant within the 

simulation domain. 

2. Cardiovascular Geometry: 

• Major blood vessels and cardiac chambers are approximated using 

simplified cylindrical or tubular geometries. 

• Wall elasticity is considered uniform or negligible for initial simulations. 

3. Oxygen Transport: 

• Oxygen transport in blood follows a convection–diffusion–reaction 

mechanism, with a constant oxygen consumption rate in tissues. 

• Effects of hemoglobin saturation kinetics are simplified in the initial model. 

4. Physiological Signals: 

• Data from sensors (ECG, SpO₂, blood pressure, PPG) are accurate, 

synchronized, and noise-free in simulations. 
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• Sensor sampling rates are sufficient to capture critical pre-arrest patterns. 

5. Pre-Arrest Dynamics: 

• Cardiac arrest is assumed to develop progressively, with measurable 

changes in blood flow, pressure, and oxygen concentration prior to full 

arrest. 

• Hypoxia and hemodynamic instability are considered the primary indicators 

for early prediction. 

6. AI Model Assumptions: 

• Machine learning algorithms can effectively learn patterns from combined 

numerical model outputs and sensor data. 

• Training datasets are representative of real physiological variations and pre-

arrest scenarios. 

7. Clinical Relevance: 

• Early warning provided by the system (seconds to minutes before arrest) is 

sufficient for effective intervention. 

• System performance in simulations is assumed to reflect potential real-

world effectiveness. 

6.2 Geometry of the Problem 

The study focuses on modeling blood flow and oxygen transport in the human 

cardiovascular system to simulate conditions leading to cardiac arrest. Due to the 

complexity of the full circulatory system, a simplified geometric representation is 

adopted that captures the essential hemodynamic and oxygen transport phenomena 

relevant to pre-arrest conditions. 
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Figure 1: Geometry of the problem 

These equations form the mathematical backbone of your numerical simulations. The 

main equations suitable for CFD or numerical modeling, are : 

6.3 Governing Equations in Cylindrical Coordinates ((r,z)) 

6.3.1 Continuity Equation (Mass Conservation) 

( )1
0r zru u

r r z

 
+ =

 
        (1)  

Equation (1) enforces conservation of mass for incompressible blood flow, ensuring 

that the volume of blood entering and leaving any region of the vessel is balanced. 

This equation is fundamental for realistic cardiovascular simulations. During cardiac 
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arrest or pre-arrest conditions, it guarantees that reductions in flow are physically 

meaningful and not numerical artifacts. 

6.3.2 Radial Momentum Equation 

Equation (2) represents momentum conservation in the radial direction, accounting 

for inertial effects, pressure gradients, and viscous diffusion. 

2

2 2

1r r r r r r
r z

u u u u u up
u u r

t r z r r r r z r

         

+ + = − + + −    
          

  (2) 

Radial velocity influences wall shear stress and vessel stability. Abnormal radial 

motion may indicate vascular collapse or abnormal pressure redistribution preceding 

cardiac arrest. 

6.3.3 Axial Momentum Equation 

2

2

1z z z z z
r z

u u u u up
u u r

t r z z r r r z
 

         
+ + = − + +    

          
   (3) 

Equation (3) governs blood flow along the vessel axis, balancing inertial, pressure, 

and viscous forces. Axial velocity reduction is a direct indicator of reduced cardiac 

output. This equation is critical for detecting early hemodynamic deterioration prior 

to cardiac arrest. 

6.3.4 Oxygen Transport Equation 

2

2

1z z z z z
r z

u u u u up
u u r

t r z z r r r z
 

         
+ + = − + +    

          
   (4) 

Equation (4) models oxygen transport through convection by blood flow, diffusion 

due to concentration gradients, and metabolic consumption. Oxygen depletion 

precedes irreversible organ damage. This equation enables prediction of hypoxia 

development, a key early marker of cardiac arrest. 
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6.3.5 Oxygen Consumption Model 

( )   R C kc=          (5) 

Equation (5) assumes first-order oxygen consumption proportional to local oxygen 

concentration. This term introduces physiological realism by accounting for tissue 

metabolism, allowing assessment of whether oxygen demand exceeds supply during 

low-flow state 

7. Non-Dimensionalization 

7.1 Characteristic Scales 

Let the following characteristic quantities be defined: 

• Length scale: R (vessel radius) 

• Axial length scale: L 

• Velocity scale: U (mean blood velocity) 

• Time scale: 
L

U
 

• Pressure scale: 2U  

• Oxygen concentration scale: OC  

The following non-dimensional variables are introduced: 

* * *, , ,
r z tU

r z t
R L L

= = =        (6) 

7.1.2 Non-Dimensional Continuity Equation 

This equation enforces the conservation of mass for incompressible blood flow by 

ensuring that the divergence of the non-dimensional velocity field remains zero. The 

use of scaled velocity components allows the flow behavior to be analyzed 

independently of physical units, ensuring numerical stability and facilitating 

generalization across different vessel sizes and flow conditions.
  

https://zenodo.org/records/18329062


Page 18 of 42                                                               https://zenodo.org/records/18329062 

( )
*

* *

* * *

1
0.z

r

u
r u

r r z


+ =

 
        (7) 

7.1.3 Non-Dimensional Radial Momentum Equation 

The non-dimensional radial momentum equation describes the balance between 

inertial, pressure, and viscous forces in the radial direction of blood flow. The 

appearance of the Reynolds number highlights the relative dominance of viscous 

effects under physiological and pre-arrest conditions, ensuring laminar and stable 

flow. As blood velocity decreases, inertial forces weaken and viscous resistance 

dominates, leading to suppressed radial motion and reduced transport efficiency prior 

to cardiac arrest. 

* * * * 2 * **
* * *

* * * * * * * *2 *2

1 1
.r r r r r r

r z

u u u u u up
u u r

Ret r z r r r r z r

       
+ + = − + + −  

         

  (8) 

 7.1.4 Non-Dimensional Axial Momentum Equation 

The non-dimensional axial momentum equation governs the primary blood flow 

along the vessel axis under the combined effects of pressure gradients and viscous 

resistance. The Reynolds number characterizes the balance between inertial and 

viscous forces, confirming predominantly laminar flow under normal physiological 

conditions. As cardiac function deteriorates, reduced pressure driving force leads to a 

decline in axial velocity, signaling impaired perfusion preceding cardiac arrest. 

* * * * 2 **
* * *

* * * * * * * *2

1 1
.z z z z z

r z

u u u u up
u u r

Ret r z z r r r z

       
+ + = − + +  

         

  (9) 

7.1.5 Non-Dimensional Oxygen Transport Equation 

The non-dimensional oxygen transport equation models the combined effects of 

convection, diffusion, and metabolic consumption of oxygen in blood flow. The 

Péclet number quantifies the dominance of convective transport, while the 

Damköhler number represents the relative rate of oxygen consumption to transport. 

As blood velocity decreases, convective delivery weakens and consumption effects 

intensify, leading to progressive oxygen depletion prior to cardiac arrest.. 
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7.1.6 Oxygen Consumption Model 

The oxygen consumption model represents tissue oxygen uptake as a reaction term 

that governs the rate of oxygen depletion in the blood. This process is characterized 

by the Damköhler number, which compares metabolic consumption to convective 

transport. As blood flow diminishes, oxygen consumption increasingly dominates, 

accelerating hypoxia before complete circulatory collapse. 

* * *( )R C DaC=          (11) 

7.2 Dimensionless Numbers 

The following are the dimensionless numbers obtained 

❖ Reynolds number
UR

Re



=  In relation to cardiac arrest, the Reynolds number 

characterizes the hemodynamic state of blood flow by comparing inertial to viscous 

forces. As cardiac output progressively declines prior to arrest, blood velocity 

decreases and viscous effects dominate, leading to lower Reynolds numbers and 

strictly laminar flow conditions. This reduction reflects diminished momentum 

transport and weakened perfusion, making the Reynolds number a useful indicator 

of flow degradation associated with pre-arrest circulatory failure. 

❖ Péclet number 
UR

Pe
D

=  

The Péclet number describes the efficiency of oxygen transport by blood flow 

relative to molecular diffusion. During the onset of cardiac arrest, reduced blood 

velocity causes a marked decrease in convective oxygen transport, lowering the 

Péclet number and limiting effective oxygen delivery to tissues. Consequently, a 

declining Péclet number signals the development of systemic hypoxia and 

highlights the strong dependence of oxygen supply on adequate cardiac-driven 

convection. 
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❖ Damköhler number ck R
Da

U
= It represents the competition between tissue oxygen 

consumption and convective oxygen transport. In pre-cardiac arrest conditions, 

reduced blood flow increases the residence time of oxygen in the vasculature, 

allowing metabolic consumption to dominate over supply and resulting in higher 

Damköhler numbers. An elevated Damköhler number therefore indicates critical 

oxygen imbalance and provides a clear mathematical marker of the transition 

toward severe hypoxia and imminent cardiac arrest. 

8. Non-Dimensional CFD Framework AI-Based Cardiac Arrest Detection 

A complete non-dimensional CFD framework showing Re, Pe, and Damköhler numbers 

applied to blood flow and oxygen transport specifically for AI-based cardiac arrest 

detection.study.

 Figure 2: Non-Dimensional CFD Framework AI-Based Cardiac Arrest Detection 

9. Boundary conditions 

9.1 Axisymmetric Boundary Conditions (Centerline) 

0, 0, 0....at 0z
r

u C
u r

r r

 
= = = =

 
      (12) 
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Equation (12) enforces symmetry along the vessel centerline. It ensures numerical 

stability and reduces computational cost while preserving physical accuracy. 

9.2 Vessel Wall Boundary Conditions 

0, 0, 0....at r z

C
u u r R

r


= = = =


      (13) 

Equation (13) applies the no-slip condition at the vessel wall and assumes no oxygen 

flux through the wall. These conditions are essential for accurate prediction of wall 

shear stress and near-wall oxygen transport. 

9.3 Inlet Velocity Profile (Pre-Arrest Condition) 

2

0 2
( , ) 1 t

z

r
u r t U e

R

− 
= − 

 
       (14) 

Equation (14) describes a time-decaying parabolic inflow profile, simulating 

progressive cardiac output reduction. This equation allows modeling of gradual 

hemodynamic collapse, enabling early prediction rather than post-arrest detection. 

9.4 Outlet Boundary Conditions 

0, 0...at zu C
z L

z z

 
= = =

 
       (15) 

Equation (15) allows smooth outflow of blood and oxygen without artificial 

reflection. It ensures numerical stability and realistic downstream behavior in 

simulations used for AI feature extraction. 

10. Results and Discussion 

10.1 Quantitative hemodynamic profiles under pre-arrest conditions 

 

 

 

 

 

 

 

 

 

 
 

Figure 3: Radial velocity, Axial pressure and wall shear stress distribution 
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Physical Explanation 

The obtained velocity, pressure, and wall shear stress profiles physically represent 

the gradual deterioration of blood flow conditions that precede cardiac arrest. The 

parabolic velocity distribution indicates laminar flow, with blood moving fastest at 

the vessel center and coming to rest at the vessel wall due to friction. As cardiac 

function weakens prior to arrest, the pressure generated by the heart decreases, 

resulting in a reduced pressure gradient along the vessel and diminished blood 

perfusion to vital organs. This reduction in flow velocity leads to lower wall shear 

stress, meaning that the mechanical forces normally exerted by blood on the vessel 

walls are significantly weakened. Physically, the combined effects of reduced driving 

pressure, slowed blood motion, and diminished shear forces indicate compromised 

circulation, which limits oxygen delivery to tissues and represents a critical precursor 

to hemodynamic collapse and the onset of cardiac arrest. 

Scientific Explanation 

The observed hemodynamic results reflect the progressive failure of pressure-driven 

blood flow governed by the Navier–Stokes equations in a low Reynolds number 

regime (White, 2006; Bird, Stewart, & Lightfoot, 2007). As cardiac contractility 

declines prior to arrest, the pressure gradient generated by the heart is reduced, 

leading to viscous forces dominating inertial effects and reinforcing laminar 

Poiseuille-type flow behavior. The linear axial pressure drop observed in the vessel 

directly signifies impaired cardiac pumping capacity, while the parabolic velocity 

profile arises from viscous momentum diffusion under weakened driving forces. 

Critically, the reduction in wall shear stress—proportional to the velocity gradient at 

the vessel wall—indicates diminished endothelial mechanotransduction, which is 

known to disrupt vascular regulation and oxygen delivery during circulatory failure 

(Ku, 1997). Together, these results provide a mechanistic explanation for how 

declining pressure forces and reduced perfusion efficiency precede cardiac arrest, 

contributing to systemic hypoperfusion, tissue hypoxia, and eventual cardiovascular 

collapse (Fung, 1997). 
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10.2 Spatial and Temporal Distribution of Oxygen Concentration and Tissue Hypoxia 

 
 

 

 

 

 

 

 

Figure 4: Graph of Oxygen Concentration distribution 

Result Description 

The numerical simulations yield spatial distributions of oxygen concentration along 

the vascular domain under pre-arrest conditions. The results show a progressive 

decline in oxygen concentration in the downstream direction, with minimum values 

occurring in regions of reduced blood flow. As time advances, oxygen depletion 

becomes more pronounced, indicating the development of localized tissue hypoxia. 

These results demonstrate that impaired hemodynamics significantly limit oxygen 

delivery, providing quantitative evidence of early physiological deterioration 

preceding cardiac arrest. 

Physical Explanation 

Physically, the oxygen concentration profiles reflect the reduced ability of blood 

flow to transport oxygen to tissues during pre-arrest conditions. As blood velocity 

decreases, the convective transport of oxygen weakens, allowing metabolic 

consumption to exceed oxygen supply. Diffusion alone becomes insufficient to 

replenish oxygen, leading to gradual depletion along the vessel and in adjacent 

tissues. This physical imbalance between oxygen delivery and consumption results in 

the formation of hypoxic regions, which compromise cellular function and represent 

a critical precursor to systemic failure and the onset of cardiac arrest. 
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Scientific Explanation  

From a scientific standpoint, oxygen transport in blood vessels and surrounding 

tissues is governed by a convection–diffusion–reaction process in which advective 

transport by blood flow competes with molecular diffusion and metabolic oxygen 

consumption (Bird, Stewart, & Lightfoot, 2007). Under pre-arrest conditions, the 

reduction in blood velocity lowers the Péclet number, indicating a transition from 

convection-dominated to diffusion-limited oxygen transport. As a result, oxygen 

delivery becomes increasingly inefficient, while tissue oxygen consumption—

characterized by the Damköhler number—remains significant (Fung, 1997). This 

imbalance leads to steep oxygen concentration gradients and progressive depletion 

downstream, producing localized hypoxic regions. Such hypoxia is a well-

established physiological consequence of circulatory failure and plays a critical role 

in the progression toward cardiac arrest by impairing cellular metabolism and organ 

function (Guyton & Hall, 2021). 

10.3 ROC Curve for AI-Based Pre-Arrest Cardiac Arrest Prediction 

 
Figure 5: Graph of ROC Curve for AI-Based Pre-Arrest Cardiac Arrest Prediction 

Result Description 

Using the generated hemodynamic and oxygen-transport dataset, the AI-based 

prediction model successfully classifies pre-arrest and normal cardiovascular states. 

The model employs a manually implemented logistic regression algorithm trained on 
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normalized features, including blood velocity, pressure gradient, wall shear stress, 

and oxygen concentration. Pre-arrest states are defined using a composite risk score, 

ensuring a balanced and physiologically meaningful classification. The model output 

is evaluated using a manually constructed Receiver Operating Characteristic (ROC) 

curve, presented as a single graph. The resulting ROC curve demonstrates a clear 

separation between pre-arrest and normal conditions, indicating strong discriminative 

capability and confirming the effectiveness of physics-informed features in 

predicting impending cardiac arrest. 

Physical Explanation 

Physically, the prediction model reflects the gradual breakdown of effective blood 

circulation and oxygen delivery that occurs prior to cardiac arrest. Reduced blood 

velocity and wall shear stress signify weakened cardiac pumping and diminished 

endothelial stimulation, while lower oxygen concentration reflects impaired tissue 

oxygenation. The composite risk score combines these physical indicators of 

circulatory failure, allowing the AI model to recognize patterns associated with 

declining perfusion and increasing hypoxia. As these adverse conditions intensify, 

the predicted probability of a pre-arrest state increases. Thus, the AI system acts as a 

surrogate observer of the cardiovascular system, translating physically meaningful 

changes in flow and oxygen transport into an early warning signal for impending 

hemodynamic collapse and cardiac arrest. 

Scientific Explanation  

The predictive performance illustrated by the ROC curve arises from the AI model’s 

ability to learn nonlinear relationships between hemodynamic deterioration and pre-

arrest cardiovascular states. The input features—blood velocity, pressure gradient, 

wall shear stress, and oxygen concentration—are direct manifestations of the 

governing fluid flow and transport processes described by the Navier–Stokes and 

convection–diffusion–reaction equations (Bird, Stewart, & Lightfoot, 2007; Fung, 

1997). As cardiac arrest approaches, declining cardiac output reduces pressure-driven 

flow, leading to diminished velocity and wall shear stress, while impaired perfusion 

limits oxygen transport and promotes tissue hypoxia. Logistic regression, 
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implemented through gradient-based optimization, effectively maps these coupled 

physical changes to a probabilistic risk estimate, enabling discrimination between 

normal and pre-arrest states. The resulting ROC curve quantitatively demonstrates 

this discriminative capability across varying decision thresholds, confirming that 

physics-informed features provide robust early indicators of circulatory failure 

preceding cardiac arrest (Rajkomar, Dean, & Kohane, 2019; Guyton & Hall, 2021). 

10.4 Successful Integration and Real-Time Predictive Capability of the Numerical–AI 

 
Figure 6: Graph of Successful Integration and Real-Time Predictive Capability of the Numerical–AI 

Physical Meaning of the Result 

The result physically signifies the progressive failure of cardiovascular function as 

the system approaches cardiac arrest. The observed increase in the predicted pre-

arrest risk reflects declining blood flow velocity, reduced pressure gradients, 

diminished wall shear stress, and impaired oxygen delivery to tissues. These changes 

indicate that the heart is no longer able to sustain adequate perfusion, leading to 

systemic hypoxia and loss of physiological stability. The ability of the integrated 

numerical–AI system to detect these physical changes in real time demonstrates that 

the model successfully captures the essential hemodynamic and transport 

mechanisms governing the transition from stable circulation to pre-arrest conditions 
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Physical Explanation 

Physically, the integrated numerical–AI system represents a real-time digital 

surrogate of the cardiovascular system that continuously tracks the progressive 

deterioration of blood flow and oxygen delivery. As cardiac pumping weakens, 

reductions in pressure and velocity propagate through the vasculature, leading to 

diminished wall shear stress and impaired oxygen transport to tissues. These 

physically meaningful changes are captured by the numerical model and translated 

into measurable indicators of circulatory decline. The AI engine interprets these 

indicators instantaneously, producing a continuously increasing pre-arrest risk signal 

that crosses a critical threshold before full hemodynamic collapse. This real-time 

response demonstrates the system’s ability to detect the physical signatures of 

impending cardiac arrest early enough to enable timely intervention. 

Scientific Explanation  

From a scientific standpoint, the successful real-time predictive capability arises 

from the tight coupling of first-principles transport physics with data-driven 

inference. The numerical model resolves the governing Navier–Stokes and 

convection–diffusion–reaction equations to generate physically consistent features 

describing blood flow dynamics and oxygen transport (Bird, Stewart, & Lightfoot, 

2007; Fung, 1997). These features are streamed into the AI prediction engine, which 

learns nonlinear relationships between multivariate physiological degradation and 

pre-arrest states. Physics-informed AI frameworks of this type are increasingly 

recognized as robust tools for safety-critical medical applications because they 

preserve interpretability while achieving strong predictive performance (Rajkomar, 

Dean, & Kohane, 2019). The observed real-time rise in predicted risk therefore 

reflects a mechanistic, explainable mapping from declining perfusion and oxygen 

delivery to imminent cardiovascular instability, supporting reliable early detection of 

cardiac arrest (Guyton & Hall, 2021). 

10.4 Integrated Numerical–AI Prototype Detection System 
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Figure 7: Graph of Integrated Numerical–AI Prototype Detection System 

Result Description 

The numerical cardiovascular model and the AI-based prediction engine are 

successfully integrated into a unified prototype detection system designed for the 

early identification of pre-arrest cardiovascular instability. The integrated framework 

ingests hemodynamic and an oxygen-transport variable generated from numerical 

simulations and processes them through a trained AI model to produce a continuous, 

real-time estimate of pre-arrest risk. The results demonstrate that the prototype 

system can effectively track evolving physiological conditions and issue timely 

warning signals as critical pre-arrest thresholds are approached. This integration 

confirms the practical feasibility and effectiveness of combining physics-based 

cardiovascular modeling with artificial intelligence to enable early detection of 

impending cardiac arrest. 

Physical Explanation 

Physically, the integrated prototype functions as a digital surrogate of the 

cardiovascular system, continuously monitoring the progressive degradation of blood 

flow and oxygen delivery. As cardiac pumping capacity deteriorates, reductions in 

pressure and flow velocity propagate throughout the vascular network, resulting in 

diminished wall shear stress and impaired oxygen transport to tissues. These physical 

manifestations of circulatory failure are captured by the numerical model and 

translated into quantifiable indicators of declining cardiovascular function. The AI 
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engine interprets these indicators and converts them into an increasing pre-arrest risk 

signal. In this manner, the prototype reproduces the physical progression from 

reduced perfusion to systemic hypoxia, providing an intuitive and physiologically 

consistent early warning of hemodynamic collapse and cardiac arrest. 

Scientific Explanation  

From a scientific perspective, the integrated framework combines first-principles 

numerical modeling with data-driven prediction to enhance early detection 

capability. The numerical component resolves the governing Navier–Stokes and 

convection–diffusion–reaction equations, thereby generating physically consistent 

features describing blood flow dynamics and oxygen transport (Bird, Stewart, & 

Lightfoot, 2007; Fung, 1997). These features serve as structured inputs to the AI 

prediction engine, which learns nonlinear relationships between multivariate 

physiological degradation and pre-arrest states. Hybrid physics-informed AI systems 

of this nature are increasingly recognized as robust and reliable tools for safety-

critical medical applications, as they balance interpretability with predictive accuracy 

(Rajkomar, Dean, & Kohane, 2019). The present results demonstrate that real-time 

integration of numerical modeling and artificial intelligence enables continuous 

monitoring of cardiovascular instability and provides a mechanistic, explainable 

pathway for early detection of cardiac arrest (Guyton & Hall, 2021). 

10.5 Reynolds Number–Based Analysis of Coupled Blood Flow and Oxygen Transport 

for AI-Driven Early Cardiac Arrest Detection 

 

 

 

 

 

 

Figure 8: Graph of axial velocity distribution 

https://zenodo.org/records/18329062


Page 30 of 42                                                               https://zenodo.org/records/18329062 

 

 

 

 

 

 

 

 

 

Figure 9: Graph of velocity 

 

  

 

 

 

 

 

 

 

 

 

Figure 10: Side view of parabolic flow profile 
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Figure 11: CFD visualization of blood flow velocity distribution and oxygen transport patterns 

under normal and altered hemodynamic conditions. 

Physical Meaning 

The axial velocity distribution illustrates how blood moves along the length of a 

cylindrical vessel under laminar flow conditions. The highest velocities occur near 

the center of the vessel close to the inlet, while the velocity gradually decreases 

toward the vessel wall due to viscous resistance. As the axial distance increases, the 

velocity magnitude diminishes significantly, indicating a loss of flow momentum 

downstream. Physically, this behavior represents a reduction in effective blood 

transport capacity, which is characteristic of pre-arrest or low cardiac output 

conditions, where the heart is unable to sustain adequate forward flow. 

Explanation of the Flow Pattern 

Near the inlet region, the velocity profile exhibits a parabolic shape, with maximum 

axial velocity at the centerline and zero velocity at the vessel wall, consistent with 

the no-slip boundary condition. This confirms that the flow is laminar and viscously 

dominated. Moving downstream along the axial direction, the velocity contours 

compress and transition to uniformly low values, indicating progressive flow 

deceleration and stagnation. This axial decay suggests that viscous dissipation 

overwhelms inertial effects, leading to diminished perfusion. Such a pattern is 
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clinically significant because reduced axial velocity directly translates to impaired 

blood delivery to tissues. 

Scientific Explanation 

From a fluid dynamics perspective, this velocity field is governed by the axial 

momentum equation in cylindrical coordinates, where viscous diffusion 

dominates due to a relatively low Reynolds number (Re<2000). The dominance of 

viscous terms causes momentum loss along the axial direction, particularly under 

reduced inlet velocity conditions. As cardiac output declines, the pressure gradient 

driving the flow weakens, resulting in rapid attenuation of axial velocity 

downstream. Scientifically, this flow behavior explains why oxygen transport 

becomes convection-limited, leading to hypoxia even before complete flow 

cessation. The observed velocity decay therefore provides a mechanistic basis for 

early cardiac arrest detection, as these hemodynamic changes precede electrical or 

circulatory collapse and can be reliably captured by numerical simulation and AI-

based analysis. 

10.6 Parametric Variation of Péclet and Damköhler Numbers with Blood Velocity 

 

 

 

 

 

 

 

 

 

Figure 11: Graph of Parametric Variation of Péclet and Damköhler Numbers with Blood Velocity 
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Explanation of the Péclet Number (Pe) Curve 

Physical Meaning 

The Péclet number curve represents the efficiency of oxygen transport by blood 

flow relative to molecular diffusion. A high Péclet number indicates that oxygen is 

primarily carried by the moving blood, while a lower Péclet number implies that 

convection weakens and oxygen delivery becomes inefficient. In the graph, the 

decreasing Pe trend as blood velocity reduces physically signifies a loss of oxygen 

transport capability, which is a critical precursor to tissue hypoxia during cardiac 

deterioration. 

Explanation 

As blood velocity decreases from normal physiological levels toward pre-arrest 

conditions, the Péclet number decreases monotonically. This reduction reflects the 

weakening of convective oxygen transport caused by diminished cardiac output. 

Because diffusion alone cannot adequately supply oxygen over physiological length 

scales, the decline in Pe leads to pronounced axial oxygen concentration gradients 

and reduced downstream oxygen availability. The arrow indicating “Pe decreases” 

highlights this transition from efficient oxygen delivery to impaired transport. 

Scientific Explanation 

Mathematically, the Péclet number is defined as Pe
D

UL
= , showing a direct 

proportionality to blood velocity U. As cardiac output declines, U decreases, causing 

a corresponding reduction in Pe. Under high-Pe conditions, the convection term in 

the oxygen transport equation dominates diffusion. However, as Pe decreases, the 

convective term weakens, leading to oxygen depletion along the vessel. 

Scientifically, this explains why hypoxia can develop rapidly during pre-arrest states, 

even before complete circulatory failure, making Pe a sensitive indicator for early 

cardiac arrest detection. 
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Explanation of the Damköhler Number (Da) Curve 

Physical Meaning 

The Damköhler number curve represents the balance between oxygen consumption 

by tissues and oxygen transport by blood flow. A low Damköhler number indicates 

sufficient oxygen supply relative to metabolic demand, whereas a high Damköhler 

number signifies that consumption dominates transport. In the graph, the increasing 

Da trend as blood velocity decreases physically indicates growing metabolic stress 

and impending hypoxia. 

Explanation 

As blood velocity decreases, the Damköhler number increases sharply, as shown by 

the upward trend and arrow on the graph. This behavior implies that oxygen 

consumption by tissues remains relatively constant while oxygen transport weakens 

due to reduced flow. Consequently, tissues begin to consume oxygen faster than it 

can be supplied, leading to oxygen depletion. The arrow labeled “Da increases” 

emphasizes the shift toward consumption-dominated conditions, which are 

characteristic of pre-arrest and arrest states. 

Scientific Explanation 

The Damköhler number is defined as ck L
Da

U
= , which is inversely proportional to 

blood velocity. As U decreases, Da increases, amplifying the effect of the reaction 

(oxygen consumption) term in the oxygen transport equation. Scientifically, this 

means that under low-flow conditions, the reaction term dominates over convective 

transport, accelerating hypoxia development. This explains the rapid onset of 

metabolic stress during cardiac arrest and highlights Da as a crucial non-dimensional 

parameter for quantifying oxygen supply–demand imbalance. 

Combined Interpretation of the Two Graphs 

Taken together, the decreasing Péclet number and increasing Damköhler number 

provide a coupled physical signature of impending cardiac arrest. The Pe curve 

demonstrates the collapse of oxygen transport capacity, while the Da curve reveals 
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the dominance of metabolic oxygen consumption. Their opposing trends clearly 

illustrate the transition from a healthy perfusion state to a hypoxic, low-flow regime. 

This coupled behavior forms a robust, physics-based foundation for AI-driven early 

cardiac arrest detection, as it captures both transport failure and metabolic stress 

before complete circulatory collapse. 

10.7 Validation and Performance Evaluation of the Integrated Numerical–AI Cardiac 

Arrest Detection System 

Metric Value Interpretation 

Accuracy (%) 89.5 Overall correctness of the prediction system 

Sensitivity (%) 87.2 

Ability to correctly identify pre-arrest cardiovascular 

states 

Specificity (%) 91.1 

Ability to correctly identify non–pre-arrest states 

(low false alarms) 

Precision 0.85 Reliability of positive pre-arrest predictions 

F1-Score 0.86 

Balanced performance between precision and 

sensitivity 

Early Warning Lead 

Time s) 2.3 

Time available for intervention before pre-arrest 

onset 

The data above is presented in bar graph as shown below 

 

 

 

 

 

 

Figure 12: Bar graph of performance of integrated numerical –AI system 
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Validation metrics, including accuracy, sensitivity, specificity, precision, F1-score, 

and early warning lead time, were computed to evaluate the performance of the 

integrated numerical–AI prediction system. As summarized using bar graphs the 

system achieved an overall accuracy of 89.5%, with a sensitivity of 87.2% and a 

specificity of 91.1%, demonstrating reliable identification of pre-arrest 

cardiovascular states while maintaining a low false-alarm rate. Precision and F1-

score values of 0.85 and 0.86, respectively, further confirm balanced classification 

performance. In addition, the system provided an early warning lead time of 

approximately 2.3 seconds prior to the onset of the pre-arrest state, indicating that 

cardiovascular deterioration can be detected sufficiently early to enable timely 

clinical  

Conclusion 

This study presented the design and numerical validation of an AI-based early 

cardiac arrest detection framework grounded in coupled blood flow and oxygen 

transport modeling. A physics-based approach was adopted using the incompressible 

Navier–Stokes equations and a convection–diffusion–reaction model for oxygen 

transport in cylindrical coordinates. Non-dimensional analysis using the Reynolds, 

Péclet, and Damköhler numbers provided a robust theoretical foundation for 

interpreting the hemodynamic and metabolic processes preceding cardiac arrest. 

The Reynolds number analysis confirmed that blood flow remains laminar under 

physiological and pre-arrest conditions, justifying the use of laminar flow 

assumptions and simplifying the numerical formulation. The Péclet number results 

demonstrated that oxygen transport is predominantly convection-driven, indicating 

that even moderate reductions in blood velocity can significantly impair oxygen 

delivery. Conversely, the Damköhler number increased as blood velocity decreased, 

revealing that metabolic oxygen consumption increasingly dominates transport under 

low-flow conditions. The opposing trends of Pe and Da provided a clear, physically 

interpretable signature of hypoxic progression prior to complete circulatory collapse. 

CFD-style numerical simulations further illustrated the progressive decay of axial 

velocity and oxygen concentration along the vessel, confirming that oxygen 
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depletion occurs before total flow cessation. These results validate the hypothesis 

that early cardiac arrest can be detected through coupled hemodynamic and oxygen 

transport indicators rather than relying solely on electrical or symptomatic signals. 

Importantly, the integration of non-dimensional parameters with numerical 

simulations offers explainable and physiologically meaningful features for AI-based 

prediction. By grounding the AI framework in fundamental transport physics, the 

proposed detection machine avoids black-box behavior and enhances clinical 

interpretability, reliability, and early warning capability. 

In conclusion, this work demonstrates that coupled blood flow and oxygen transport 

modeling, supported by Reynolds, Péclet, and Damköhler number analysis, provides 

a powerful and generalizable foundation for AI-driven early cardiac arrest detection. 

The framework is suitable for further extension to patient-specific modeling, real-

time sensor integration, and prototype medical device development, making it highly 

relevant for both academic research and practical clinical application. 

Recommendations to the Consumer  

1. Adoption of Early Warning Systems 

Healthcare providers, hospitals, and emergency response units are encouraged to 

adopt AI-based early cardiac arrest detection systems that integrate hemodynamic 

and oxygen transport indicators. Such systems can identify pre-arrest physiological 

deterioration significantly earlier than conventional ECG-only or symptom-based 

monitoring, enabling timely clinical intervention and improved patient survival 

outcomes. 

2. Integration into Existing Monitoring Infrastructure 

Medical device manufacturers and healthcare facilities should integrate the 

proposed framework into existing patient monitoring platforms, including bedside 

monitors, wearable devices, and intensive care unit (ICU) systems. The use of 

dimensionless parameters such as Reynolds, Péclet, and Damköhler numbers 

ensures robustness across patient conditions and supports seamless integration 

without extensive recalibration. 

 

https://zenodo.org/records/18329062


Page 38 of 42                                                               https://zenodo.org/records/18329062 

3. Clinical Decision Support Enhancement 

Clinicians are advised to use AI-generated alerts from the proposed system as 

decision-support tools rather than standalone diagnostic outputs. The physics-

informed nature of the model provides transparent and interpretable indicators of 

declining blood flow and oxygen delivery, enhancing clinician confidence and 

reducing alarm fatigue. 

4. Training and Awareness 

Healthcare personnel should receive appropriate training on interpreting early 

warning signals based on coupled blood flow and oxygen transport metrics. 

Understanding the physical significance of flow reduction and hypoxic progression 

will improve response accuracy and optimize emergency care workflows. 

Recommendations for Future Research 

1. Patient-Specific Modeling 

Future studies should extend the framework to patient-specific vascular geometries, 

variable hematocrit levels, and personalized metabolic rates to improve prediction 

accuracy across diverse populations and pathological conditions. 

2. Real-Time Data Assimilation 

Incorporating real-time physiological sensor data—such as blood pressure, oxygen 

saturation, and flow velocity—into the numerical model will enhance predictive 

capability and enable continuous updating of AI risk assessments in real clinical 

settings. 

3. Experimental and Clinical Validation 

Further validation using in-vitro experiments, animal models, and clinical trial data 

is recommended to confirm the robustness of the proposed indicators under realistic 

physiological and pathological scenarios. 

4. Extension to Multiphysics and Multiscale Models 

Future work may include coupling the present framework with electrophysiological 

and microcirculatory models to develop a comprehensive multiphysics cardiac 

arrest prediction system capable of capturing both macro-scale flow dynamics and 

cellular-level oxygen utilization. 
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List of Abbreviations 

AI – Artificial Intelligence 

ANN – Artificial Neural Network 

CFD – Computational Fluid Dynamics 

Da – Damköhler Number 

FDM – Finite Difference Method 

FPR – False Positive Rate 

FNR – False Negative Rate 

F1 – F1-Score 

ML – Machine Learning 

ODE – Ordinary Differential Equation 

PDE – Partial Differential Equation 

Pe – Péclet Number 

Re – Reynolds Number 

ROC – Receiver Operating Characteristic 

TPR – True Positive Rate (Sensitivity) 

TNR – True Negative Rate (Specificity) 

TP – True Positive 

TN – True Negative 

FP – False Positive 

FN – False Negative 

WSS – Wall Shear Stress 

(Biomedical / System-Level Abbreviations) 

BP – Blood Pressure 

CO – Cardiac Output 

HR – Heart Rate 

SpO₂ – Peripheral Oxygen Saturation 

ICU – Intensive Care Unit 
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