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ABSTRACT: Sudden cardiac arrest remains a leading cause of
mortality worldwide, largely due to delayed detection and
intervention. Most existing monitoring systems identify
cardiac arrest only after circulatory collapse has already
occurred, significantly limiting the effectiveness of emergency
response. This study presents the design and numerical
validation of an Al-based early cardiac arrest detection system
capable of predicting imminent cardiac arrest prior to its onset.
The proposed framework integrates non-invasive physiological
sensing with a hybrid physics—artificial intelligence approach.
Blood flow dynamics are modeled using the incompressible
Navier—Stokes equations, while oxygen transport is
represented by a convection—diffusion—reaction model to
capture the progressive development of hypoxia under pre-
arrest conditions. Numerical simulations are conducted to
investigate hemodynamic instability and oxygen depletion
patterns associated with declining cardiac output. Key outputs
from the numerical model, including velocity fields, oxygen
concentration gradients, and a derived hypoxia index, are
combined with physiological signals and processed by a

machine learning—based prediction engine. The results
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demonstrate that the proposed system successfully identifies critical pre-arrest
signatures and provides early warning within a clinically meaningful time window.
This work establishes a robust foundation for predictive cardiac monitoring and
highlights the potential of physics-informed Al to improve survival outcomes,
enhance emergency medical decision-making, and support the future development of

intelligent, real-time cardiac arrest detection devices.

Keywords: Cardiac arrest; Blood flow; Oxygen transport; Numerical simulation,

Navier—Stokes equations,; Convection—diffusion.
1. Background Information

Sudden cardiac arrest (SCA) is a critical medical emergency characterized by the
abrupt loss of effective cardiac function, leading to the cessation of blood circulation
and oxygen delivery to vital organs. It remains one of the leading causes of death
globally, with survival rates strongly dependent on the speed of detection and
intervention. Brain injury can begin within minutes of circulatory failure,

underscoring the importance of early identification and rapid response.

Current cardiac monitoring technologies, including electrocardiography (ECQG), pulse
oximetry, and blood pressure monitors, are widely used in hospitals, ambulances, and
wearable devices. However, these systems are predominantly reactive, detecting
cardiac arrest only after significant physiological collapse has already occurred.
Alarms are often triggered when arrhythmias, oxygen saturation drops, or
hemodynamic failure are already severe, leaving a narrow window for effective
resuscitation. Additionally, high false-alarm rates reduce clinical trust and contribute

to alarm fatigue, particularly in intensive care environments.

Physiologically, cardiac arrest is not an instantaneous event but rather the final stage
of a progressive deterioration process involving declining cardiac output, unstable
electrical activity, impaired blood flow, and rapid oxygen depletion in critical tissues.
These pre-arrest dynamics manifest as subtle but measurable changes in blood
velocity, pressure gradients, oxygen transport, and heart rhythm variability.

Conventional monitoring systems rarely exploit this coupled, multiscale
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physiological behavior, focusing instead on isolated signals rather than the

underlying physical processes governing circulation and oxygen delivery.

Advances in numerical modeling and computational fluid dynamics (CFD) have
enabled detailed simulation of blood flow and mass transport within the
cardiovascular system. Governing equations such as the Navier—Stokes equations for
hemodynamics and convection—diffusion—reaction equations for oxygen transport
provide a rigorous framework for quantifying circulatory and hypoxic states under
both normal and pathological conditions. These models offer valuable insights into
the mechanisms leading to organ ischemia during reduced cardiac output and
circulatory collapse, yet they are rarely integrated into real-time clinical monitoring

systems.

In parallel, recent developments in artificial intelligence (AI) and machine
learning have demonstrated significant potential in medical signal analysis,
particularly for pattern recognition and time-series prediction. Deep learning
architectures such as recurrent neural networks and transformers are capable of
identifying complex temporal dependencies in physiological data. However, purely
data-driven models often lack interpretability and robustness, especially when trained
on limited or noisy clinical datasets, which restricts their reliability in safety-critical

applications such as cardiac arrest prediction.

The integration of physics-based numerical models with Al, often referred to as
hybrid or physics-informed intelligence, offers a promising pathway to overcome
these limitations. By embedding fundamental physiological laws into the prediction
framework, such systems can improve generalization, reduce false alarms, and
provide clinically meaningful indicators such as oxygen depletion rates and
hemodynamic instability metrics. Despite this potential, the application of hybrid
physics—Al approaches for early prediction of cardiac arrest remains largely

unexplored.

Therefore, there exists a critical need for an intelligent, predictive system that
combines physiological sensing, numerical modeling of blood flow and oxygen

transport, and Al-based decision-making to detect cardiac arrest before its onset.
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Addressing this gap could significantly improve emergency response, enhance
patient survival, and contribute to the development of next-generation smart medical

devices for both clinical and remote healthcare settings.
2. Problem Statement

Sudden cardiac arrest (SCA) is a life-threatening condition that claims millions of
lives worldwide each year. Current monitoring and diagnostic systems, such as
electrocardiography (ECG), pulse oximetry, and blood pressure monitors, are
primarily reactive, detecting cardiac arrest only after significant circulatory collapse
has occurred. This delay severely limits the effectiveness of resuscitation efforts and

contributes to high mortality rates.

Moreover, existing devices often rely on isolated physiological signals, failing to
capture the complex, coupled dynamics of blood flow, oxygen transport, and
electrical activity that precede cardiac arrest. This results in high false-alarm rates,
poor predictive capability, and limited clinical utility. While numerical simulations
and computational models can describe hemodynamics and oxygen depletion, these
are rarely integrated with real-time monitoring or predictive systems. Likewise,
purely data-driven artificial intelligence (AI) approaches can identify patterns in
physiological data but often lack interpretability and reliability, particularly in safety-

critical scenarios.

Therefore, there is a critical need for an intelligent, predictive system that combines
physiological sensing, numerical modeling of cardiovascular dynamics, and Al-
based analysis to detect cardiac arrest before its onset. Such a system would
enable early intervention, reduce mortality, and provide a foundation for the

development of next-generation, life-saving medical devices.
3. Justification

Developing a predictive system that integrates numerical cardiovascular modeling

with AI analysis addresses this critical gap and offers several compelling benefits:
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1. Clinical Impact: Early prediction of cardiac arrest can provide clinicians and
emergency responders with a critical time window for intervention, significantly

improving patient survival rates.

2. Technical Innovation: Combining physics-based simulations with Al creates a
hybrid system that is more accurate, interpretable, and robust than existing

devices or purely Al-based approaches.

3. Healthcare Accessibility: Such a system can be implemented as a wearable
device or bedside monitor, making it useful in hospitals, ambulances, and remote

healthcare settings.

4. Scientific Contribution: Integrating hemodynamics, oxygen transport modeling,
and Al-based risk assessment contributes novel methodology to the fields of

biomedical engineering, applied mathematics, and computational physiology.

5. Economic and Societal Benefits: Early detection reduces long-term treatment
costs associated with organ damage from hypoxia, decreases ICU dependency, and

enhances overall healthcare efficiency.

In summary, addressing this research gap is highly relevant, timely, and impactful,
as it combines scientific innovation with real-world clinical applications, potentially

saving lives and advancing predictive healthcare technologies.
4. Research Objectives
4.1 General Objective

To develop a predictive system that combines numerical simulations of blood flow

and oxygen transport with Al-driven analysis for early detection of cardiac arrest.
4.2 Specific Objectives

1. To model cardiovascular dynamics and oxygen transport under pre-arrest

conditions

2. To numerically simulate hemodynamic instability and tissue hypoxia patterns
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3. To design and implement an Al-based prediction engine
4. To integrate the numerical model and Al engine into a prototype detection system

5. To validate the predictive system through numerical simulations and benchmark

datasets
5. Literature Review

Divya et al. (2024) conducted a study on early cardiac arrest prediction using
machine learning techniques. Their research employed recurrent neural networks
(RNNSs to analyze temporal clinical data, capturing subtle patterns in vital signs and
hemodynamic measurements that precede cardiac arrest. The methodology allowed
for sequential modeling of patient data, enabling detection of pre-arrest physiological
trends that traditional monitoring systems often miss. The study found that the RNN
model could accurately predict cardiac arrest several hours before clinical onset,
providing a valuable time window for intervention. Divya ef al. emphasized the
potential of deep learning models in creating early warning systems, particularly
when integrating multiple physiological signals. The research also highlighted the
importance of temporal analysis, showing that patterns in heart rate, oxygen
saturation, and blood pressure evolve predictably before arrest events. By combining
clinical insights with advanced Al techniques, the study laid the groundwork for
hybrid models that incorporate both numerical simulations of cardiovascular
dynamics and machine learning. These findings suggest a transformative potential

for Al in critical care monitoring and early intervention.

Chen et al. (2024) Developed Deep EDICAS, a deep learning-based scoring system
for early cardiac arrest prediction in emergency department patients. Their
methodology integrated time-series physiological data with tabular clinical features,
allowing the model to process both static and dynamic patient information. The study
demonstrated that Deep EDICAS outperformed traditional risk scoring systems in
identifying patients at imminent risk of cardiac arrest. Chen et al. highlighted that
integrating multiple data streams using deep learning can significantly enhance
predictive performance in emergency settings. The research also emphasized real-

time applicability, showing that Al models could provide actionable alerts to
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clinicians before deterioration occurs. The study underscores the value of advanced
machine learning in emergency care and suggests potential for broader
implementation in hospital monitoring systems. Moreover, the approach provides a
foundation for integrating physiological simulations with Al, potentially improving

accuracy and reliability in pre-arrest detection.

Smith et al. (2024) conducted a systematic review on the use of Al in prehospital
emergency care, focusing specifically on out-of-hospital cardiac arrest prediction.
Their study analyzed various machine learning approaches, including supervised and
unsupervised models applied to historical and real-time patient data. Smith et al.
found that AI significantly improved early detection, risk stratification, and triage
compared to conventional scoring systems. However, the review also noted
challenges in deploying predictive models in real-world prehospital scenarios,
including limited dataset availability and difficulties integrating Al into emergency
workflows. The authors emphasized the importance of developing robust,
interpretable, and clinically implementable Al models to bridge the gap between
research and practice. This review provides a comprehensive understanding of
current Al capabilities and highlights the unmet need for reliable predictive systems

that can function in rapid-response situations.

Alamgir et al. (2022) performed a scoping review to evaluate machine learning
approaches for predicting cardiac arrest. The study revealed that neural networks and
deep learning models were the most commonly used methodologies, yet many
studies suffered from small datasets and insufficient clinical validation. Alamgir et
al. noted that these limitations reduced the generalizability of the models across
diverse patient populations. The review stressed the need for large-scale, multi-center
datasets that capture variations in physiology, demographics, and comorbidities.
Additionally, the authors highlighted that combining AI with clinical decision
support and physiological modeling could enhance predictive accuracy and clinical
relevance. This research underscores the current gap in the literature: while Al shows
promise, its translation into reliable clinical tools remains limited without rigorous

validation.

Page 7 of 42 https://zenodo.org/records/18329062


https://zenodo.org/records/18329062

Kaur et al. (2023) reviewed the application of medical expert systems and ensemble
learning approaches in cardiac arrest prediction. Their analysis demonstrated that
combining multiple classifiers, including deep learning models, could improve
predictive accuracy by leveraging complementary strengths. However, Kaur et al.
also identified critical limitations, such as inadequate preprocessing, lack of external
validation, and inconsistent feature selection across studies. The review emphasized
the importance of rigorous data preparation, feature engineering, and model
evaluation to achieve reliable clinical predictions. Kaur et al. suggested that
integrating Al with real-time monitoring systems could facilitate timely alerts,
ultimately improving patient outcomes. Their findings provide a methodological
roadmap for future research combining Al with patient-specific cardiovascular

simulations.

Lee et al. (2021) conducted a retrospective study on acute coronary syndrome
patients to predict in-hospital cardiac arrest using machine learning algorithms,
including XGBoost. The study utilized clinical parameters, laboratory tests, and vital
signs to develop predictive models capable of identifying patients at high risk before
clinical deterioration. Results showed that ML models significantly outperformed
traditional risk scoring systems, providing earlier and more accurate predictions. Lee
et al. concluded that integrating Al with routinely collected patient data could
enhance predictive monitoring in hospital settings. The research highlights the
feasibility of using machine learning for practical, real-time cardiac arrest detection
and underscores the need for hybrid approaches combining data-driven models with

physiological simulations for improved reliability.

Patel et al. (2023) proposed a scoping review protocol focusing on in-hospital
cardiac arrest prediction. The study highlighted that most predictive models rely on
static patient features and isolated physiological measurements, which limits their
accuracy. Patel et al. emphasized the importance of incorporating continuous
temporal data and pathophysiological changes leading up to cardiac arrest. The
protocol outlined strategies for integrating machine learning with real-time
monitoring, creating more robust prediction frameworks. Patel ef al. also stressed the

need for large, representative datasets to ensure generalizability across diverse
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clinical populations. The study underscores the critical gap in current research and
supports the development of hybrid Al-physics predictive systems for pre-arrest

detection.

Rao et al. (2020) explored early cardiac arrest prediction using ECG signals,
applying wavelet transforms and feature selection to preprocess the data. The study
employed classifiers such as artificial neural networks (ANNs) and support vector
machines (SVMs) to detect pre-arrest conditions. Rao et al. reported high predictive
accuracy, demonstrating the importance of advanced signal processing in enhancing
Al model performance. Their research highlighted that subtle changes in cardiac
rhythm could be detected before clinical symptoms emerge, providing a valuable
window for early intervention. The study also suggested that integrating
physiological simulations with ML-based signal analysis could further improve

prediction robustness and interpretability.

Kim et al. (2019) developed the FAST-PACE model to predict cardiac arrest or
respiratory failure using basic vital signs, including heart rate, blood pressure, and
oxygen saturation. The Al model successfully predicted adverse events up to six
hours in advance, outperforming conventional early warning scores. Kim et al.
emphasized that even simple, non-invasive physiological data could be leveraged
effectively when combined with machine learning algorithms. Their findings suggest
that rapid, actionable predictions are feasible in real-world clinical environments,
supporting the integration of Al-based early detection systems into standard

monitoring workflows.

Johnson et al. (2022) conducted a systematic meta-analysis on post-cardiac arrest
outcome prediction using machine learning. Their study found that Al-based models
generally outperformed traditional regression methods in predicting survival and
neurological outcomes. However, Johnson et al. noted that proper handling of
missing data, overfitting, and model validation remain critical for reliable clinical
application. The meta-analysis reinforced the need for methodological rigor in
developing predictive systems and highlighted the potential for combining machine

learning with physiological modeling to enhance predictive performance.
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Martinez et al. (2022) investigated pediatric cardiac arrest prediction using machine
learning models applied to electronic health record data. The study demonstrated that
Al algorithms could achieve high discrimination in predicting pre-arrest events in
children, provided sufficient temporal and clinical features were included. Martinez
et al. emphasized the importance of developing pediatric-specific models due to
physiological differences and data scarcity. Their findings indicate that machine
learning can be effective for early detection in pediatric populations, particularly

when combined with continuous monitoring and hybrid modeling approaches.

Zia et al. (2025) proposed a digital twin framework combining Efficient Net deep
learning with patient-specific cardiovascular simulations to predict cardiac events.
This hybrid approach allowed for personalized predictions by integrating mechanistic
simulations with Al pattern recognition. Zia et al. found that the framework
improved predictive accuracy and provided insights into patient-specific
physiological responses. The study demonstrated the potential of combining
numerical simulations and Al for early cardiac arrest detection, emphasizing

interpretability, reliability, and clinical applicability in real-time monitoring systems.

Hernandez et al. (2024) conducted computational fluid dynamics (CFD) simulations
of the left ventricle to study hemodynamics under normal and pathological
conditions. The study analyzed velocity distributions, flow patterns, and pressure
gradients within cardiac chambers, providing mechanistic insights into pre-arrest
physiology. Hernandez et al. concluded that understanding detailed cardiovascular
flow dynamics is essential for designing predictive models that accurately capture
pre-arrest changes. The research supports integrating CFD-based simulations with Al

algorithms to create more physiologically accurate early warning systems.

Wang et al. (2023) modeled cardiovascular function during extracorporeal membrane
oxygenation (ECMO) to study hemodynamics and oxygen transport in severe cardiac
failure. The computational simulations quantified changes in blood flow and tissue
oxygenation, demonstrating the significance of patient-specific modeling. Wang et
al. highlighted that numerical simulations can complement Al-based predictions by
providing mechanistic context, allowing early detection systems to be more robust

and reliable in critical care environments.
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Nguyen et al. (2023) conducted a computational study to optimize CPR techniques
using cardiovascular models under cardiac arrest conditions. The simulations
evaluated pressure and flow rate variations during resuscitation, revealing optimal
parameters for effective intervention. Nguyen et al. emphasized that modeling can
inform both predictive and therapeutic strategies, illustrating the dual application of

computational methods for pre-arrest detection and treatment optimization.

Singh et al. (2022) applied machine learning to heart rate variability (HRV) signals
from ICU patients to predict in-hospital cardiac arrest. By analyzing temporal
features in HRV, the models successfully detected pre-arrest events several hours in
advance. Singh et al. concluded that HRV provides valuable predictive information,
supporting its integration into Al-based early warning systems. The study also
highlighted the feasibility of non-invasive monitoring for continuous, real-time

prediction in critical care.

Patel et al. (2024) investigated the use of pulse wave analysis and machine learning
to assess blood supply and oxygen saturation. The study demonstrated that non-
invasive signals could effectively indicate deteriorating cardiovascular function,
making them suitable features for predictive models. Patel et al. emphasized that
incorporating non-invasive monitoring with Al could provide continuous, patient-
specific assessment, facilitating timely clinical intervention before cardiac arrest

occurs.

Lopez et al. (2020) developed physics-driven machine learning models that
combined physiological time-series data with predictive classifiers to estimate post-
cardiac arrest outcomes, including survival and neurological status. The hybrid
approach outperformed purely data-driven models, highlighting the importance of
integrating mechanistic physiological knowledge with Al for accurate and
interpretable predictions. Lopez et al. concluded that such hybrid systems could

enhance clinical decision-making and improve patient outcomes.

Ahmed et al. (2023) explored the integration of expert systems and decision support
tools with machine learning for early cardiac arrest detection. Their study

emphasized that Al models alone often lack practical clinical usability and must be
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incorporated into workflow-oriented platforms to be effective. Ahmed et al.
demonstrated that combined systems could provide timely alerts and actionable

insights, improving patient monitoring and early intervention.

Thompson et al. (2025) focused on explainable Al (XAI) models for cardiac arrest
prediction to ensure clinical adoption. While predictive accuracy is important,
Thompson et al. highlighted that models must also provide transparent and
interpretable outputs for clinicians to make informed decisions. The study concluded
that explain ability is crucial for real-world deployment, reinforcing that Al-based
early warning systems must balance accuracy with interpretability to be successfully

integrated into healthcare workflows.

Although recent studies have demonstrated the potential of artificial intelligence in
predicting cardiac arrest using machine learning models such as RNNs, CNNs, and
ensemble approaches (Divya et al., 2024; Rao et al., 2020; Kim et al., 2019), several
critical gaps remain. Most existing models are trained on limited datasets from single
institutions, which reduces their accuracy and generalizability across diverse patient

populations (Alamgir et al., 2022; Patel et al., 2023).

Additionally, current predictive systems primarily rely on static or single-point
measurements of vital signs rather than continuous temporal monitoring, limiting
their ability to detect early physiological changes that precede cardiac arrest
(Martinez et al., 2022; Patel et al., 2023). The integration of multi-modal data, such
as ECG, hemodynamic parameters, oxygen saturation, and patient demographics, is
still limited, even though combining these inputs could enhance predictive

performance (Chen et al., 2024; Zia et al., 2025).

Furthermore, while computational models and numerical simulations provide
detailed insights into cardiovascular dynamics and oxygen transport (Hernandez et
al., 2024; Wang et al., 2023), these physics-based approaches have not been fully
integrated with Al models, resulting in predictive tools that lack physiological

interpretability and clinical trustworthiness.

Finally, there is a notable lack of real-time, patient-specific Al systems capable of

continuous monitoring and immediate clinical alerts in ICU or prehospital settings
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(Smith et al., 2024; Thompson et al., 2025). Existing models are often retrospective,

offline, or limited to post-event analysis, which reduces their clinical utility.

Therefore, the research gap lies in the absence of a comprehensive, real-time, Al-
driven early cardiac arrest detection system that combines continuous multi-modal
patient monitoring, numerical simulations of cardiovascular dynamics, and
explainable predictive modeling for accurate and clinically interpretable early

warning.
6. Methodology

6.1 Assumptions

In conducting this study, the following assumptions are made to ensure the

feasibility, accuracy, and relevance of the predictive system:
1. Blood Properties:

e Blood is assumed to be an incompressible Newtonian fluid for the

purposes of numerical modeling.

e Density and dynamic viscosity are considered constant within the

simulation domain.
2. Cardiovascular Geometry:

e Major blood vessels and cardiac chambers are approximated using

simplified cylindrical or tubular geometries.
e Wall elasticity is considered uniform or negligible for initial simulations.
3. Oxygen Transport:

e Oxygen transport in blood follows a convection—diffusion—reaction

mechanism, with a constant oxygen consumption rate in tissues.
o Effects of hemoglobin saturation kinetics are simplified in the initial model.
4. Physiological Signals:

e Data from sensors (ECG, SpO:, blood pressure, PPG) are accurate,

synchronized, and noise-free in simulations.
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e Sensor sampling rates are sufficient to capture critical pre-arrest patterns.
5. Pre-Arrest Dynamics:

e (Cardiac arrest is assumed to develop progressively, with measurable
changes in blood flow, pressure, and oxygen concentration prior to full

arrest.

o Hypoxia and hemodynamic instability are considered the primary indicators

for early prediction.
6. Al Model Assumptions:

e Machine learning algorithms can effectively learn patterns from combined

numerical model outputs and sensor data.

o Training datasets are representative of real physiological variations and pre-

arrest scenarios.
7. Clinical Relevance:

o Early warning provided by the system (seconds to minutes before arrest) is

sufficient for effective intervention.

e System performance in simulations is assumed to reflect potential real-

world effectiveness.
6.2 Geometry of the Problem

The study focuses on modeling blood flow and oxygen transport in the human
cardiovascular system to simulate conditions leading to cardiac arrest. Due to the
complexity of the full circulatory system, a simplified geometric representation is
adopted that captures the essential hemodynamic and oxygen transport phenomena

relevant to pre-arrest conditions.
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Figure 1: Geometry of the problem

These equations form the mathematical backbone of your numerical simulations. The

main equations suitable for CFD or numerical modeling, are :
6.3 Governing Equations in Cylindrical Coordinates ((r,z))
6.3.1 Continuity Equation (Mass Conservation)

130w, , ou. 0
r or 0z

Equation (1) enforces conservation of mass for incompressible blood flow, ensuring
that the volume of blood entering and leaving any region of the vessel is balanced.

This equation is fundamental for realistic cardiovascular simulations. During cardiac
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arrest or pre-arrest conditions, it guarantees that reductions in flow are physically

meaningful and not numerical artifacts.
6.3.2 Radial Momentum Equation

Equation (2) represents momentum conservation in the radial direction, accounting

for inertial effects, pressure gradients, and viscous diffusion.

ou, ou ou op 1 0( ou o’u, u
Dtu, —Ltu, —L |=——Fu| ——| r =% [+ — % (2)
ot or oz or ror\ or ozt it

Radial velocity influences wall shear stress and vessel stability. Abnormal radial

motion may indicate vascular collapse or abnormal pressure redistribution preceding

cardiac arrest.

6.3.3 Axial Momentum Equation

(8u2+u ou, , 8uZJ__6_p+ 10( ou), ou 3)
o o “a) & “rala ) o2

Equation (3) governs blood flow along the vessel axis, balancing inertial, pressure,

and viscous forces. Axial velocity reduction is a direct indicator of reduced cardiac
output. This equation is critical for detecting early hemodynamic deterioration prior

to cardiac arrest.

6.3.4 Oxygen Transport Equation

2
p(@uz . ou, u Guz]:_ﬁ_ijﬂ{li(rauzj_i_a uz} )

Ot " or 0z Oz r or or oz*

Equation (4) models oxygen transport through convection by blood flow, diffusion
due to concentration gradients, and metabolic consumption. Oxygen depletion
precedes irreversible organ damage. This equation enables prediction of hypoxia

development, a key early marker of cardiac arrest.
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6.3.5 Oxygen Consumption Model

R(C) = ke (5)

Equation (5) assumes first-order oxygen consumption proportional to local oxygen
concentration. This term introduces physiological realism by accounting for tissue
metabolism, allowing assessment of whether oxygen demand exceeds supply during

low-flow state
7. Non-Dimensionalization
7.1 Characteristic Scales
Let the following characteristic quantities be defined:
e Length scale: R (vessel radius)
o Axial length scale: L

e Velocity scale: U (mean blood velocity)

e Time scale: £
U

e Pressure scale: pU?

Oxygen concentration scale: C,

The following non-dimensional variables are introduced:

)t = (6)

7.1.2 Non-Dimensional Continuity Equation

This equation enforces the conservation of mass for incompressible blood flow by
ensuring that the divergence of the non-dimensional velocity field remains zero. The
use of scaled velocity components allows the flow behavior to be analyzed
independently of physical units, ensuring numerical stability and facilitating

generalization across different vessel sizes and flow conditions.
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ii(r*u*)Jr ou, =0. (7)

roor e
7.1.3 Non-Dimensional Radial Momentum Equation

The non-dimensional radial momentum equation describes the balance between
inertial, pressure, and viscous forces in the radial direction of blood flow. The
appearance of the Reynolds number highlights the relative dominance of viscous
effects under physiological and pre-arrest conditions, ensuring laminar and stable
flow. As blood velocity decreases, inertial forces weaken and viscous resistance
dominates, leading to suppressed radial motion and reduced transport efficiency prior

to cardiac arrest.

* * * * * 2 * *
ouy 0w, wou, __p' 1 {1&[}’*5%}@%_%}. ®

* * z * * 0 | Tx L = * * *
Oz or Re|r or or oz 7

ot " or

7.1.4 Non-Dimensional Axial Momentum Equation

The non-dimensional axial momentum equation governs the primary blood flow
along the vessel axis under the combined effects of pressure gradients and viscous
resistance. The Reynolds number characterizes the balance between inertial and
viscous forces, confirming predominantly laminar flow under normal physiological
conditions. As cardiac function deteriorates, reduced pressure driving force leads to a

decline in axial velocity, signaling impaired perfusion preceding cardiac arrest.

ou., «ou, sou. op 1|1 & «ou )| ou
+ur *+uz * *+_ % = 7 * +—*2 . (9)
ot or Oz 0z Re|r or or oz

7.1.5 Non-Dimensional Oxygen Transport Equation

The non-dimensional oxygen transport equation models the combined effects of
convection, diffusion, and metabolic consumption of oxygen in blood flow. The
Péclet number quantifies the dominance of convective transport, while the
Damkohler number represents the relative rate of oxygen consumption to transport.
As blood velocity decreases, convective delivery weakens and consumption effects

intensify, leading to progressive oxygen depletion prior to cardiac arrest..
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7.1.6 Oxygen Consumption Model

The oxygen consumption model represents tissue oxygen uptake as a reaction term
that governs the rate of oxygen depletion in the blood. This process is characterized
by the Damkoéhler number, which compares metabolic consumption to convective
transport. As blood flow diminishes, oxygen consumption increasingly dominates,

accelerating hypoxia before complete circulatory collapse.
R(C")=DaC" (11)
7.2 Dimensionless Numbers

The following are the dimensionless numbers obtained

% Reynolds numberRe=M In relation to cardiac arrest, the Reynolds number

7,
characterizes the hemodynamic state of blood flow by comparing inertial to viscous
forces. As cardiac output progressively declines prior to arrest, blood velocity
decreases and viscous effects dominate, leading to lower Reynolds numbers and
strictly laminar flow conditions. This reduction reflects diminished momentum
transport and weakened perfusion, making the Reynolds number a useful indicator
of flow degradation associated with pre-arrest circulatory failure.

% Péclet number Pe= U—;

The Péclet number describes the efficiency of oxygen transport by blood flow
relative to molecular diffusion. During the onset of cardiac arrest, reduced blood
velocity causes a marked decrease in convective oxygen transport, lowering the
Péclet number and limiting effective oxygen delivery to tissues. Consequently, a
declining Péclet number signals the development of systemic hypoxia and
highlights the strong dependence of oxygen supply on adequate cardiac-driven

convection.
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i k.R .. .
¢ Damkohler number Da = [CJ It represents the competition between tissue oxygen

consumption and convective oxygen transport. In pre-cardiac arrest conditions,
reduced blood flow increases the residence time of oxygen in the vasculature,
allowing metabolic consumption to dominate over supply and resulting in higher
Damkohler numbers. An elevated Damkohler number therefore indicates critical
oxygen imbalance and provides a clear mathematical marker of the transition

toward severe hypoxia and imminent cardiac arrest.
8. Non-Dimensional CFD Framework AI-Based Cardiac Arrest Detection

A complete non-dimensional CFD framework showing Re, Pe, and Damkohler numbers

applied to blood flow and oxygen transport specifically for Al-based cardiac arrest

detection study.

Non-Dimensional CFD Framework for Al-Based Early Cardiac Arrest Detection

Blood Flow Simulation Oxygen Transport Simulation
L =y

Reynolds Number (Re)

Re=LUL ZAETN pe=UL
(o — Do

Inertia vs. Viscosity @ Convection vs. Diffusion
M~ » > @ —

Advection  Diffusion

Turbulent vs. Laminar Flow

Damkohler Number (Da) Clinical Alert .
Da=Rol m_
UC,

Reaction Rate vs. Transport Rate

— — Warning: High Risk!
- -*_Q'-e.. PR~ Al Prediction System

Oxygen Consumption Continuous Monitoring & Alerts

Dimensionless Blood Flow e  Normalized Oxygen Transport e  Al-Driven Early Arrest Detection

Figure 2: Non-Dimensional CFD Framework Al-Based Cardiac Arrest Detection
9. Boundary conditions

9.1 Axisymmetric Boundary Conditions (Centerline)

u, =0,—2=0,"—=0..atr=0 (12)
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Equation (12) enforces symmetry along the vessel centerline. It ensures numerical

stability and reduces computational cost while preserving physical accuracy.
9.2 Vessel Wall Boundary Conditions

ur:O,uzzo,a—Czo....atr:R (13)
or

Equation (13) applies the no-slip condition at the vessel wall and assumes no oxygen
flux through the wall. These conditions are essential for accurate prediction of wall

shear stress and near-wall oxygen transport.

9.3 Inlet Velocity Profile (Pre-Arrest Condition)

2
uAfJ)=LQ(L—§7je“’ (14)

Equation (14) describes a time-decaying parabolic inflow profile, simulating
progressive cardiac output reduction. This equation allows modeling of gradual

hemodynamic collapse, enabling early prediction rather than post-arrest detection.

9.4 Outlet Boundary Conditions

U 0,9 _0. atz=1 (15)
Oz oz

Equation (15) allows smooth outflow of blood and oxygen without artificial

reflection. It ensures numerical stability and realistic downstream behavior in

simulations used for Al feature extraction.

10. Results and Discussion

10.1 Quantitative hemodynamic profiles under pre-arrest conditions

s «10-Radial Velocity Profile o Axial Pressure Distribution s Walk Shear Stress Distribution
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Figure 3: Radial velocity, Axial pressure and wall shear stress distribution
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Physical Explanation

The obtained velocity, pressure, and wall shear stress profiles physically represent
the gradual deterioration of blood flow conditions that precede cardiac arrest. The
parabolic velocity distribution indicates laminar flow, with blood moving fastest at
the vessel center and coming to rest at the vessel wall due to friction. As cardiac
function weakens prior to arrest, the pressure generated by the heart decreases,
resulting in a reduced pressure gradient along the vessel and diminished blood
perfusion to vital organs. This reduction in flow velocity leads to lower wall shear
stress, meaning that the mechanical forces normally exerted by blood on the vessel
walls are significantly weakened. Physically, the combined effects of reduced driving
pressure, slowed blood motion, and diminished shear forces indicate compromised
circulation, which limits oxygen delivery to tissues and represents a critical precursor

to hemodynamic collapse and the onset of cardiac arrest.
Scientific Explanation

The observed hemodynamic results reflect the progressive failure of pressure-driven
blood flow governed by the Navier—Stokes equations in a low Reynolds number
regime (White, 2006; Bird, Stewart, & Lightfoot, 2007). As cardiac contractility
declines prior to arrest, the pressure gradient generated by the heart is reduced,
leading to viscous forces dominating inertial effects and reinforcing laminar
Poiseuille-type flow behavior. The linear axial pressure drop observed in the vessel
directly signifies impaired cardiac pumping capacity, while the parabolic velocity
profile arises from viscous momentum diffusion under weakened driving forces.
Critically, the reduction in wall shear stress—proportional to the velocity gradient at
the vessel wall—indicates diminished endothelial mechanotransduction, which is
known to disrupt vascular regulation and oxygen delivery during circulatory failure
(Ku, 1997). Together, these results provide a mechanistic explanation for how
declining pressure forces and reduced perfusion efficiency precede cardiac arrest,
contributing to systemic hypoperfusion, tissue hypoxia, and eventual cardiovascular

collapse (Fung, 1997).
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10.2 Spatial and Temporal Distribution of Oxygen Concentration and Tissue Hypoxia

5 %10265 Oxygen Concentration Distribution under Pre-Arrest Conditions
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Figure 4: Graph of Oxygen Concentration distribution

Result Description

The numerical simulations yield spatial distributions of oxygen concentration along
the vascular domain under pre-arrest conditions. The results show a progressive
decline in oxygen concentration in the downstream direction, with minimum values
occurring in regions of reduced blood flow. As time advances, oxygen depletion
becomes more pronounced, indicating the development of localized tissue hypoxia.
These results demonstrate that impaired hemodynamics significantly limit oxygen
delivery, providing quantitative evidence of early physiological deterioration

preceding cardiac arrest.
Physical Explanation

Physically, the oxygen concentration profiles reflect the reduced ability of blood
flow to transport oxygen to tissues during pre-arrest conditions. As blood velocity
decreases, the convective transport of oxygen weakens, allowing metabolic
consumption to exceed oxygen supply. Diffusion alone becomes insufficient to
replenish oxygen, leading to gradual depletion along the vessel and in adjacent
tissues. This physical imbalance between oxygen delivery and consumption results in
the formation of hypoxic regions, which compromise cellular function and represent

a critical precursor to systemic failure and the onset of cardiac arrest.
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Scientific Explanation

From a scientific standpoint, oxygen transport in blood vessels and surrounding
tissues is governed by a convection—diffusion—reaction process in which advective
transport by blood flow competes with molecular diffusion and metabolic oxygen
consumption (Bird, Stewart, & Lightfoot, 2007). Under pre-arrest conditions, the
reduction in blood velocity lowers the Péclet number, indicating a transition from
convection-dominated to diffusion-limited oxygen transport. As a result, oxygen
delivery becomes increasingly inefficient, while tissue oxygen consumption—
characterized by the Damkohler number—remains significant (Fung, 1997). This
imbalance leads to steep oxygen concentration gradients and progressive depletion
downstream, producing localized hypoxic regions. Such hypoxia is a well-
established physiological consequence of circulatory failure and plays a critical role
in the progression toward cardiac arrest by impairing cellular metabolism and organ

function (Guyton & Hall, 2021).

10.3 ROC Curve for AI-Based Pre-Arrest Cardiac Arrest Prediction

. ROC Curve for Pre-Arrest Prediction
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Figure 5: Graph of ROC Curve for Al-Based Pre-Arrest Cardiac Arrest Prediction

o

Result Description

Using the generated hemodynamic and oxygen-transport dataset, the Al-based
prediction model successfully classifies pre-arrest and normal cardiovascular states.

The model employs a manually implemented logistic regression algorithm trained on
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normalized features, including blood velocity, pressure gradient, wall shear stress,
and oxygen concentration. Pre-arrest states are defined using a composite risk score,
ensuring a balanced and physiologically meaningful classification. The model output
is evaluated using a manually constructed Receiver Operating Characteristic (ROC)
curve, presented as a single graph. The resulting ROC curve demonstrates a clear
separation between pre-arrest and normal conditions, indicating strong discriminative
capability and confirming the effectiveness of physics-informed features in

predicting impending cardiac arrest.
Physical Explanation

Physically, the prediction model reflects the gradual breakdown of effective blood
circulation and oxygen delivery that occurs prior to cardiac arrest. Reduced blood
velocity and wall shear stress signify weakened cardiac pumping and diminished
endothelial stimulation, while lower oxygen concentration reflects impaired tissue
oxygenation. The composite risk score combines these physical indicators of
circulatory failure, allowing the Al model to recognize patterns associated with
declining perfusion and increasing hypoxia. As these adverse conditions intensify,
the predicted probability of a pre-arrest state increases. Thus, the Al system acts as a
surrogate observer of the cardiovascular system, translating physically meaningful
changes in flow and oxygen transport into an early warning signal for impending

hemodynamic collapse and cardiac arrest.
Scientific Explanation

The predictive performance illustrated by the ROC curve arises from the AI model’s
ability to learn nonlinear relationships between hemodynamic deterioration and pre-
arrest cardiovascular states. The input features—blood velocity, pressure gradient,
wall shear stress, and oxygen concentration—are direct manifestations of the
governing fluid flow and transport processes described by the Navier—Stokes and
convection—diffusion—reaction equations (Bird, Stewart, & Lightfoot, 2007; Fung,
1997). As cardiac arrest approaches, declining cardiac output reduces pressure-driven
flow, leading to diminished velocity and wall shear stress, while impaired perfusion

limits oxygen transport and promotes tissue hypoxia. Logistic regression,
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implemented through gradient-based optimization, effectively maps these coupled
physical changes to a probabilistic risk estimate, enabling discrimination between
normal and pre-arrest states. The resulting ROC curve quantitatively demonstrates
this discriminative capability across varying decision thresholds, confirming that
physics-informed features provide robust early indicators of circulatory failure

preceding cardiac arrest (Rajkomar, Dean, & Kohane, 2019; Guyton & Hall, 2021).

10.4 Successful Integration and Real-Time Predictive Capability of the Numerical-Al

Successful Integration and Real-Time Predictive Capability of the Numericat Al
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Figure 6: Graph of Successful Integration and Real-Time Predictive Capability of the Numerical-Al
Physical Meaning of the Result

The result physically signifies the progressive failure of cardiovascular function as
the system approaches cardiac arrest. The observed increase in the predicted pre-
arrest risk reflects declining blood flow wvelocity, reduced pressure gradients,
diminished wall shear stress, and impaired oxygen delivery to tissues. These changes
indicate that the heart is no longer able to sustain adequate perfusion, leading to
systemic hypoxia and loss of physiological stability. The ability of the integrated
numerical-Al system to detect these physical changes in real time demonstrates that
the model successfully captures the essential hemodynamic and transport

mechanisms governing the transition from stable circulation to pre-arrest conditions
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Physical Explanation

Physically, the integrated numerical-Al system represents a real-time digital
surrogate of the cardiovascular system that continuously tracks the progressive
deterioration of blood flow and oxygen delivery. As cardiac pumping weakens,
reductions in pressure and velocity propagate through the vasculature, leading to
diminished wall shear stress and impaired oxygen transport to tissues. These
physically meaningful changes are captured by the numerical model and translated
into measurable indicators of circulatory decline. The Al engine interprets these
indicators instantaneously, producing a continuously increasing pre-arrest risk signal
that crosses a critical threshold before full hemodynamic collapse. This real-time
response demonstrates the system’s ability to detect the physical signatures of

impending cardiac arrest early enough to enable timely intervention.
Scientific Explanation

From a scientific standpoint, the successful real-time predictive capability arises
from the tight coupling of first-principles transport physics with data-driven
inference. The numerical model resolves the governing Navier—Stokes and
convection—diffusion—reaction equations to generate physically consistent features
describing blood flow dynamics and oxygen transport (Bird, Stewart, & Lightfoot,
2007; Fung, 1997). These features are streamed into the Al prediction engine, which
learns nonlinear relationships between multivariate physiological degradation and
pre-arrest states. Physics-informed Al frameworks of this type are increasingly
recognized as robust tools for safety-critical medical applications because they
preserve interpretability while achieving strong predictive performance (Rajkomar,
Dean, & Kohane, 2019). The observed real-time rise in predicted risk therefore
reflects a mechanistic, explainable mapping from declining perfusion and oxygen
delivery to imminent cardiovascular instability, supporting reliable early detection of

cardiac arrest (Guyton & Hall, 2021).

10.4 Integrated Numerical-Al Prototype Detection System
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Integrated Numerical-Al Prototype System for Early Detection of Cardiac Arrest
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Figure 7: Graph of Integrated Numerical-Al Prototype Detection System

Result Description

The numerical cardiovascular model and the Al-based prediction engine are
successfully integrated into a unified prototype detection system designed for the
early identification of pre-arrest cardiovascular instability. The integrated framework
ingests hemodynamic and an oxygen-transport variable generated from numerical
simulations and processes them through a trained AI model to produce a continuous,
real-time estimate of pre-arrest risk. The results demonstrate that the prototype
system can effectively track evolving physiological conditions and issue timely
warning signals as critical pre-arrest thresholds are approached. This integration
confirms the practical feasibility and effectiveness of combining physics-based
cardiovascular modeling with artificial intelligence to enable early detection of

impending cardiac arrest.
Physical Explanation

Physically, the integrated prototype functions as a digital surrogate of the
cardiovascular system, continuously monitoring the progressive degradation of blood
flow and oxygen delivery. As cardiac pumping capacity deteriorates, reductions in
pressure and flow velocity propagate throughout the vascular network, resulting in
diminished wall shear stress and impaired oxygen transport to tissues. These physical
manifestations of circulatory failure are captured by the numerical model and

translated into quantifiable indicators of declining cardiovascular function. The Al
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engine interprets these indicators and converts them into an increasing pre-arrest risk
signal. In this manner, the prototype reproduces the physical progression from
reduced perfusion to systemic hypoxia, providing an intuitive and physiologically

consistent early warning of hemodynamic collapse and cardiac arrest.
Scientific Explanation

From a scientific perspective, the integrated framework combines first-principles
numerical modeling with data-driven prediction to enhance early detection
capability. The numerical component resolves the governing Navier—Stokes and
convection—diffusion—reaction equations, thereby generating physically consistent
features describing blood flow dynamics and oxygen transport (Bird, Stewart, &
Lightfoot, 2007; Fung, 1997). These features serve as structured inputs to the Al
prediction engine, which learns nonlinear relationships between multivariate
physiological degradation and pre-arrest states. Hybrid physics-informed Al systems
of this nature are increasingly recognized as robust and reliable tools for safety-
critical medical applications, as they balance interpretability with predictive accuracy
(Rajkomar, Dean, & Kohane, 2019). The present results demonstrate that real-time
integration of numerical modeling and artificial intelligence enables continuous
monitoring of cardiovascular instability and provides a mechanistic, explainable

pathway for early detection of cardiac arrest (Guyton & Hall, 2021).

10.5 Reynolds Number—Based Analysis of Coupled Blood Flow and Oxygen Transport

for AI-Driven Early Cardiac Arrest Detection
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Figure 8: Graph of axial velocity distribution
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Figure 9: Graph of velocity
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Figure 10: Side view of parabolic flow profile
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Figure 11: CFD visualization of blood flow velocity distribution and oxygen transport patterns

under normal and altered hemodynamic conditions.
Physical Meaning

The axial velocity distribution illustrates how blood moves along the length of a
cylindrical vessel under laminar flow conditions. The highest velocities occur near
the center of the vessel close to the inlet, while the velocity gradually decreases
toward the vessel wall due to viscous resistance. As the axial distance increases, the
velocity magnitude diminishes significantly, indicating a loss of flow momentum
downstream. Physically, this behavior represents a reduction in effective blood
transport capacity, which is characteristic of pre-arrest or low cardiac output

conditions, where the heart is unable to sustain adequate forward flow.
Explanation of the Flow Pattern

Near the inlet region, the velocity profile exhibits a parabolic shape, with maximum
axial velocity at the centerline and zero velocity at the vessel wall, consistent with
the no-slip boundary condition. This confirms that the flow is laminar and viscously
dominated. Moving downstream along the axial direction, the velocity contours
compress and transition to uniformly low values, indicating progressive flow
deceleration and stagnation. This axial decay suggests that viscous dissipation

overwhelms inertial effects, leading to diminished perfusion. Such a pattern is
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Normalized Non-Dimensional Value

clinically significant because reduced axial velocity directly translates to impaired

blood delivery to tissues.

Scientific Explanation

From a fluid dynamics perspective, this velocity field is governed by the axial
momentum equation in cylindrical coordinates, where viscous diffusion
dominates due to a relatively low Reynolds number (Re<2000). The dominance of
viscous terms causes momentum loss along the axial direction, particularly under
reduced inlet velocity conditions. As cardiac output declines, the pressure gradient
driving the flow weakens, resulting in rapid attenuation of axial velocity
downstream. Scientifically, this flow behavior explains why oxygen transport
becomes convection-limited, leading to hypoxia even before complete flow
cessation. The observed velocity decay therefore provides a mechanistic basis for
early cardiac arrest detection, as these hemodynamic changes precede electrical or
circulatory collapse and can be reliably captured by numerical simulation and Al-

based analysis.

10.6 Parametric Variation of Péclet and Damkohler Numbers with Blood Velocity

Coupled Variation of Péclet and Damkohler Numbers
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Figure 11: Graph of Parametric Variation of Péclet and Damkohler Numbers with Blood Velocity
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Explanation of the Péclet Number (Pe) Curve
Physical Meaning

The Péclet number curve represents the efficiency of oxygen transport by blood
flow relative to molecular diffusion. A high Péclet number indicates that oxygen is
primarily carried by the moving blood, while a lower Péclet number implies that
convection weakens and oxygen delivery becomes inefficient. In the graph, the
decreasing Pe trend as blood velocity reduces physically signifies a loss of oxygen
transport capability, which is a critical precursor to tissue hypoxia during cardiac

deterioration.
Explanation

As blood velocity decreases from normal physiological levels toward pre-arrest
conditions, the Péclet number decreases monotonically. This reduction reflects the
weakening of convective oxygen transport caused by diminished cardiac output.
Because diffusion alone cannot adequately supply oxygen over physiological length
scales, the decline in Pe leads to pronounced axial oxygen concentration gradients
and reduced downstream oxygen availability. The arrow indicating “Pe decreases”

highlights this transition from efficient oxygen delivery to impaired transport.

Scientific Explanation

. : L : :
Mathematically, the Péclet number is defined as Pe=%, showing a direct

proportionality to blood velocity U. As cardiac output declines, U decreases, causing
a corresponding reduction in Pe. Under high-Pe conditions, the convection term in
the oxygen transport equation dominates diffusion. However, as Pe decreases, the
convective term weakens, leading to oxygen depletion along the vessel.
Scientifically, this explains why hypoxia can develop rapidly during pre-arrest states,
even before complete circulatory failure, making Pe a sensitive indicator for early

cardiac arrest detection.

Page 33 of 42 https://zenodo.org/records/18329062


https://zenodo.org/records/18329062

Explanation of the Damkohler Number (Da) Curve
Physical Meaning

The Damkdohler number curve represents the balance between oxygen consumption
by tissues and oxygen transport by blood flow. A low Damkdhler number indicates
sufficient oxygen supply relative to metabolic demand, whereas a high Damkdhler
number signifies that consumption dominates transport. In the graph, the increasing
Da trend as blood velocity decreases physically indicates growing metabolic stress

and impending hypoxia.
Explanation

As blood velocity decreases, the Damkohler number increases sharply, as shown by
the upward trend and arrow on the graph. This behavior implies that oxygen
consumption by tissues remains relatively constant while oxygen transport weakens
due to reduced flow. Consequently, tissues begin to consume oxygen faster than it
can be supplied, leading to oxygen depletion. The arrow labeled “Da increases”
emphasizes the shift toward consumption-dominated conditions, which are

characteristic of pre-arrest and arrest states.

Scientific Explanation

c

The Damkohler number is defined as Da =

, which is inversely proportional to

blood velocity. As U decreases, Da increases, amplifying the effect of the reaction
(oxygen consumption) term in the oxygen transport equation. Scientifically, this
means that under low-flow conditions, the reaction term dominates over convective
transport, accelerating hypoxia development. This explains the rapid onset of
metabolic stress during cardiac arrest and highlights Da as a crucial non-dimensional

parameter for quantifying oxygen supply—demand imbalance.
Combined Interpretation of the Two Graphs

Taken together, the decreasing Péclet number and increasing Damkohler number
provide a coupled physical signature of impending cardiac arrest. The Pe curve

demonstrates the collapse of oxygen transport capacity, while the Da curve reveals
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the dominance of metabolic oxygen consumption. Their opposing trends clearly
illustrate the transition from a healthy perfusion state to a hypoxic, low-flow regime.
This coupled behavior forms a robust, physics-based foundation for Al-driven early
cardiac arrest detection, as it captures both transport failure and metabolic stress

before complete circulatory collapse.

10.7 Validation and Performance Evaluation of the Integrated Numerical-Al Cardiac

Arrest Detection System

Metric Value | Interpretation

Accuracy (%) 89.5 | Overall correctness of the prediction system

Ability to correctly identify pre-arrest cardiovascular

Sensitivity (%) 87.2 | states

Ability to correctly identify non—pre-arrest states
Specificity (%) 91.1 | (low false alarms)
Precision 0.85 | Reliability of positive pre-arrest predictions

Balanced performance between precision and

F1-Score 0.86 | sensitivity
Early Warning Lead Time available for intervention before pre-arrest
Time s) 2.3 | onset

The data above is presented in bar graph as shown below
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Figure 12: Bar graph of performance of integrated numerical —Al system
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Validation metrics, including accuracy, sensitivity, specificity, precision, Fl-score,
and early warning lead time, were computed to evaluate the performance of the
integrated numerical-Al prediction system. As summarized using bar graphs the
system achieved an overall accuracy of 89.5%, with a sensitivity of 87.2% and a
specificity of 91.1%, demonstrating reliable identification of pre-arrest
cardiovascular states while maintaining a low false-alarm rate. Precision and F1-
score values of 0.85 and 0.86, respectively, further confirm balanced classification
performance. In addition, the system provided an early warning lead time of
approximately 2.3 seconds prior to the onset of the pre-arrest state, indicating that
cardiovascular deterioration can be detected sufficiently early to enable timely

clinical
Conclusion

This study presented the design and numerical validation of an Al-based early
cardiac arrest detection framework grounded in coupled blood flow and oxygen
transport modeling. A physics-based approach was adopted using the incompressible
Navier—Stokes equations and a convection—diffusion—reaction model for oxygen
transport in cylindrical coordinates. Non-dimensional analysis using the Reynolds,
Péclet, and Damkdhler numbers provided a robust theoretical foundation for

interpreting the hemodynamic and metabolic processes preceding cardiac arrest.

The Reynolds number analysis confirmed that blood flow remains laminar under
physiological and pre-arrest conditions, justifying the use of laminar flow
assumptions and simplifying the numerical formulation. The Péclet number results
demonstrated that oxygen transport is predominantly convection-driven, indicating
that even moderate reductions in blood velocity can significantly impair oxygen
delivery. Conversely, the Damkohler number increased as blood velocity decreased,
revealing that metabolic oxygen consumption increasingly dominates transport under
low-flow conditions. The opposing trends of Pe and Da provided a clear, physically

interpretable signature of hypoxic progression prior to complete circulatory collapse.

CFD-style numerical simulations further illustrated the progressive decay of axial

velocity and oxygen concentration along the vessel, confirming that oxygen
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depletion occurs before total flow cessation. These results validate the hypothesis
that early cardiac arrest can be detected through coupled hemodynamic and oxygen

transport indicators rather than relying solely on electrical or symptomatic signals.

Importantly, the integration of non-dimensional parameters with numerical
simulations offers explainable and physiologically meaningful features for Al-based
prediction. By grounding the Al framework in fundamental transport physics, the
proposed detection machine avoids black-box behavior and enhances clinical

interpretability, reliability, and early warning capability.

In conclusion, this work demonstrates that coupled blood flow and oxygen transport
modeling, supported by Reynolds, Péclet, and Damkdhler number analysis, provides
a powerful and generalizable foundation for Al-driven early cardiac arrest detection.
The framework is suitable for further extension to patient-specific modeling, real-
time sensor integration, and prototype medical device development, making it highly

relevant for both academic research and practical clinical application.
Recommendations to the Consumer

1. Adoption of Early Warning Systems
Healthcare providers, hospitals, and emergency response units are encouraged to
adopt Al-based early cardiac arrest detection systems that integrate hemodynamic
and oxygen transport indicators. Such systems can identify pre-arrest physiological
deterioration significantly earlier than conventional ECG-only or symptom-based
monitoring, enabling timely clinical intervention and improved patient survival
outcomes.

2. Integration into Existing Monitoring Infrastructure
Medical device manufacturers and healthcare facilities should integrate the
proposed framework into existing patient monitoring platforms, including bedside
monitors, wearable devices, and intensive care unit (ICU) systems. The use of
dimensionless parameters such as Reynolds, Péclet, and Damkdhler numbers
ensures robustness across patient conditions and supports seamless integration

without extensive recalibration.
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3. Clinical Decision Support Enhancement
Clinicians are advised to use Al-generated alerts from the proposed system as
decision-support tools rather than standalone diagnostic outputs. The physics-
informed nature of the model provides transparent and interpretable indicators of
declining blood flow and oxygen delivery, enhancing clinician confidence and
reducing alarm fatigue.

4. Training and Awareness
Healthcare personnel should receive appropriate training on interpreting early
warning signals based on coupled blood flow and oxygen transport metrics.
Understanding the physical significance of flow reduction and hypoxic progression

will improve response accuracy and optimize emergency care workflows.
Recommendations for Future Research

1. Patient-Specific Modeling
Future studies should extend the framework to patient-specific vascular geometries,
variable hematocrit levels, and personalized metabolic rates to improve prediction
accuracy across diverse populations and pathological conditions.

2. Real-Time Data Assimilation
Incorporating real-time physiological sensor data—such as blood pressure, oxygen
saturation, and flow velocity—into the numerical model will enhance predictive
capability and enable continuous updating of Al risk assessments in real clinical
settings.

3. Experimental and Clinical Validation
Further validation using in-vitro experiments, animal models, and clinical trial data
is recommended to confirm the robustness of the proposed indicators under realistic
physiological and pathological scenarios.

4. Extension to Multiphysics and Multiscale Models
Future work may include coupling the present framework with electrophysiological
and microcirculatory models to develop a comprehensive multiphysics cardiac
arrest prediction system capable of capturing both macro-scale flow dynamics and

cellular-level oxygen utilization.

Page 38 of 42 https://zenodo.org/records/18329062


https://zenodo.org/records/18329062

List of Abbreviations

Al — Artificial Intelligence

ANN - Artificial Neural Network
CFD — Computational Fluid Dynamics
Da — Damkohler Number

FDM - Finite Difference Method
FPR — False Positive Rate

FNR - False Negative Rate

F1 —F1-Score

ML — Machine Learning

ODE - Ordinary Differential Equation
PDE - Partial Differential Equation
Pe — Péclet Number

Re — Reynolds Number

ROC — Receiver Operating Characteristic
TPR — True Positive Rate (Sensitivity)
TNR — True Negative Rate (Specificity)
TP — True Positive

TN — True Negative

FP — False Positive

FN — False Negative

WSS — Wall Shear Stress

(Biomedical / System-Level Abbreviations)

BP — Blood Pressure

CO - Cardiac Output

HR — Heart Rate

SpO: — Peripheral Oxygen Saturation
ICU - Intensive Care Unit
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