MSI Journal of @SI P
Multidisciplinary Research (MSIJMR)

Edwards Curve and BIG MAC Attack
Aubain Jose MAYEUKEU!", Emmanuel FOUOTSA??3, Celestin LELE!

I Departement Of Mathematics and Computer Sciences, University of

Dschang, P.O.box 67, Dschang, Cameroon.

2 Departement of Mathematics, Higher Teacher Training College, The

University of Bamenda, P.O.Box 39, Bambili, Cameroon.

3 Center for Cybersecurity and Mathematical Cryptology, The University of

Th th decl
¢ a Ors. eerare Bamenda., P.O. Box 39, Bambili, Cameroon.
that no funding was

received for this work * Correspondence: Aubain Jose MAYEUKEU

ABSTRACT: In 2001, Walter introduced the BIG MAC attack on

Received: 10-November-2025 RSA systems. This hori- zontal collision attack exploits the
Accepted: 12-December-2025

Published: 19-January-2026

detection of common operands between two multiplications. It
is highly effective, as a single power consumption trace is
Copyright © 2026, Authors retain suffi- cient to recover all the bits of the secret exponent.
copyright. Licensed under the Creative Initially, the BIG MAC attack was not applicable to

Commons Attribution 4.0 International cryptosystems based on elliptic curves. It was only in 2013 that

License (CC BY 4.0), which permits Bauer et al. enhanced the attack and proposed a version
unrestricted use, distribution, and . .) .

. , ' adapted to ellip- tic curves. This new approach specifically
reproduction in any medium, provided

the original work is properly cited. targets the atomicity countermeasure and relies on identifying

https://creativecommons.org/licenses/by common operands between two multiplications within the

/4.0/ (CC BY 4.0 deed) addition and doubling algorithms for elliptic curve points. In

2016, Danger et al. further refined the attack by significantly
This article is published in the MSI

L improving its efficiency: instead of comparing only two
Journal of Multidisciplinary Research

(MSIJMR) ISSN 3049-0669 (Online) multiplications, their method compares sixteen, thereby

achieving much better results. In this work, we first analyze the
The journal is managed and published

atomicity coun- termeasure applied to Edwards curves,
by MSI Publishers. y pPp

Twisted Edwards curves, and Edwards curves defined over

Volume: 3, Issue: 1 (January-2026) binary fields. Then, we study the BIG MAC attack on these

Page 1 of 18 https://zenodo.org/records/18296047

https://zenodo.org/records/18296047
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msipublishers.com/msijmr/
https://msipublishers.com/msijmr/
https://msipublishers.com/msijmr/

curves, focusing on its effectiveness against atomicity-based countermeasures.

Keywords: Elliptic Curve Cryptography, Big Mac Attack, Side Channel Atomicity,

Edwards curves.
1. Introduction

Point scalar multiplication is a fundamental component of elliptic curve
cryptography. This cryptographic approach is increasingly popular and widely
recommended due to its key advantage: the use of very small key sizes. However,
cryptographic protocols based on elliptic curves are vulnerable to side-channel
attacks. These attacks exploit information such as electromagnetic emissions,
variations in current consumption, or power usage during the execution of scalar

multiplication algorithms, aiming to extract details about the secret key.

Among side-channel attacks, we can notably mention SPA (Simple Power Anal-
ysis). This attack exploits the significant differences in power consumption between
point addition and point doubling during the execution of scalar multiplication algo-
rithms. By observing a single power consumption trace, the attacker can reconstruct
the sequence of additions and doublings performed during scalar multiplication,
which may allow them to recover the secret key. Several countermeasures have been
proposed to mitigate this attack, including unified formulas and atomicity formulas
[[71, [3]]- These approaches involve rewriting point addition and doubling operations
as identi- cal sequences of addition and multiplication operations over the field. This
prevents distinguishing between addition and doubling operations solely by

observing power consumption traces.

However, even with the use of atomicity, elliptic curves remain vulnerable to a Side-
Channel Attack that exploits this countermeasure: the BIG MAC attack. Introduced
in 2001 by Walter for RSA [8], this attack involves observing the power consumption
traces of two multiplications and detecting whether these multiplications share a
com- mon operand. Initially, this attack was not applicable to elliptic curves.In 2013,
Bauer et al. successfully enhanced the BIG MAC attack and applied it to elliptic
curves [4]. They targeted the atomicity countermeasure and demonstrated that if an

attacker can identify multiplications sharing common operands, they can recover the

Page 2 of 18 https://zenodo.org/records/18296047

https://zenodo.org/records/18296047

secret key used in point scalar multiplication. In 2016, J.-L. Danger et al. further

refined the attack, focusing on comparing 16 multiplications instead of just 2 [2].

Yusuke Takemura et al. proposed a new atomicity formula effective for binary
Weierstrass elliptic curves and showed the vulnerability of this countermeasure to the

BIG MAC attack [5].

In this work, we first analyze the atomicity countermeasure applied to Edwards
curves, Twisted Edwards curves, and Edwards curves defined over binary fields.
Then, we study the BIG MAC attack on these curves, focusing on its effectiveness
against atomicity-based countermeasures. The rest of paper is organised as follows:
In Section 2, we review the properties of Edwards curves, focusing specifically on
the addition formulas in affine and projective coordinates. We propose rewriting this
addition and pointing out doubling formulas as uniform sequences of scalar
operations to implement the atomicity countermeasure. We also revisit the principle
of the BIG MAC attack on elliptic curves. In Section 3, we analyze the BIG MAC
attack on Edwards curves. In Section 4, we provide countermeasures against the BIG

MAC attack and conclude with a summary.
2 Elliptic Curves Cryptography
2.1 Edwards Curve

Lep p > 3 be a prime number and K = F;, be a field. The Edwards form of an elliptic
curve over a field F, is given by the equation E : x* + y? = ¢*(1 + x%y?), where ¢, ed
F,. The set of points satisfying the equation ofE form an abelian group, the neutral
element of this is the point (0, ¢). We will denoted that group as E(K). Let P1 = (x1,
y1) and P> = (x2, y2) be two points of E(K), P1 + P2 is computed as follows:
X1V2 + yix2 ViV2 — X1X2
P +P =(;)

12 c(1 + dxixayiy2) c(1 —dxixay1y2)

The above addition formulae contain finite field inversions which are costly and can
be avoided by changing the affine coordinates to other systems such as projective

coordinates.

Page 3 of 18 https://zenodo.org/records/18296047

https://zenodo.org/records/18296047

Addition In Projective Coordinates: Let P; = (x1, y1) and P> = (x2, y2) be two points
of E(K), in projective coordinates, P; = (X;; Yi; Z;), P> = (Xo; Y2, Z3), where X; =
xiZy, Y1 =y1Z1, X1 =x225, Y>=y27>, Z1, Z> €K. (X3, Y3, Z3) =

P; + P> 1s computed as follow:

A=271Z,B=A4 C=X/Xo, D=YY..
E=dCD,F=B—-E,G=B+E,

Xz =AF (X; + Y)(X>+Y;) —C—D)
Y; =AGD — C)

, 23 =cFG

Doubling In Projective Coordinates: Let P; = (XI; Y;; Z;) be a point in projective

coordinates over the curve E. (X3, Y3; Z3) = 2P; is computed as follow:

B=(X;+Y),C=X2D=Y
1 1

E=C+D, H(cZ)’ J=E—-2HX3=c(B—E)J
Y3 =cE(C—-D)
Z3=FEJ
2.2 Twisted Edwards curve
The Twisted Edwards form of an elliptic curve over K is described as:
ET:ax’ +y? =1+ dx%? (a, d €K, ad(a — d)# 0)
The neutral element is the affine point (0, 1). The inverse of a point (x;, \/y1) is the
point (x;, y1). The point (0,-1) is a point of order 2 and the point (+1/a, 0) is a

point of order 4.

Page 4 of 18 https://zenodo.org/records/18296047

https://zenodo.org/records/18296047

The set of points P = (x, y) satisfy Er, is denoted by Er (K), which forms an abelian
group. Let P; = (x;, y1) and P> = (x2, y2) be two points on E7 (K), the sum P3 = P; +

P> = (x3, y3) can be computed as follows:

_ _X1Y2 Tt Xx2yp1 V2 —axixz
(x.y)=(.-)

33 14 dxixoy1y2 1 —dxixayiy

Addition point on Twisted Edwards curve is unified, that means we can use the same
addition formulas for point doubling. On Twisted Edwards curve model, there are
three different coordinates: projective coordinates,inverted coordinates, extended
coor- dinates. In the next table, we present these different coordinates and give the
number of different addition formulas and doubling in EFD [1]. Addition In

Projective Coordinates:

Given a pair of points (X7 : Y1 : Z1) and (X2 : Y2 : Z»), their sum (X3 : Y3 :
Z3)A:Z1'Zz, B:Az, C:Xl'Xz,D:Yl'YZ,

E=dC-D, F=B—-E, G=B-+E,

X3=A'F'((X|+Y|)'(X2+Y2)_C_D),
Y3=4-G - (D—a(), Zz=F -G. (1)

Doubling In Projective Coordinates:

Given a point (Xi: Y1: Z1), its doubling point (X3: Y3: Z3) is computed as:

B=(X:+Y1)% C=X2 D=Y2
1 1

E=aC,F=E+D,H=27, (2)
J=F —2H,
Xz=(B-C—-D) J
Ys=F (E—D)Zs=F -J

2.3 Edwards curve over Binary Fields
We recall that an Edwards elliptic curve over binary fields is defined as follows:
E :di(x+y) +da(x® + %) = xpy +xp(x +y) +xH7°

where di, d» € K= Fom, where m is a positive integer.

Page 5 of 18 https://zenodo.org/records/18296047

https://zenodo.org/records/18296047

Let m be and integer and K = Fom a binary field. Let d;,dy € K such that d; # 0
and dy # d% + d;. The binary Edwards curve with the coefficients d;, ds is the affine
curve:

E:dy(z+y) + da(2” + y°) = zy + ay(z + y) + 27y

If (z,y) € E then (y,z) € E and —(z,y) = (y,). The neutral element for the addition
law is the point (0, 0).
Let P, = (z1,11) and P> = (x2,y2) be two points on the binary curve E and
= (z3,y3) = P1 + P5. P3 is computed as follows:

di(z1 + z2) + do(z1 + y1)(z2 + y2) + (z1 + 23)(z2(y1 + y2 + 1) + y192)

T
. dy + (21 + 73) (22 + 2)

Yy = dy(y1 +y2) + da(z1 + 1) (w2 + y2) + (41 + yf) (ya(@1 + 22 + 1) + 2175)
: dy + (11 + y?) (w2 + y2)

.If P, = P; then Py = (z3,y3) = 2P;. P3 is computed as follows:

di(14+ 21 4+11)

di +xy1 + 22 (1 + 21+ 1)
di(14+z14+11)

di+ iy +y2(1+ 21 + 1)

.’E3:1+

y;.}=1+

In these different formulas we have inversions which are very expensive so it is
preferable to use coordinate systems which will not need inversion such as projective
coordinates.

Let P, = (x1,11), Let P» = (3,y2) be points on the elliptic curve E, in projective
coordinates Py = (Zyx1 : Zyyy : Z1), Po = (Zaxo : Zoys : Zs) for some Zy, Zy € Fom.
Let _|Pg (X; Y; Zg) Pl +P2

Alg(:nrlthm.dbl1D over Edwards Binary Curves
Input: (P, # O)
Output: P; = (X3.Y3, Z3) = 2P,

Operation
1 A= X2
2 B=A?
3 O=Y?
4 D=C?
5 AE =22
6 Ty = EZ?
T F=d T,
8 Tn=B+D
9 G == j—?Tﬁ

10 H=AxEFE
11 I=CxF

12 J=H+1

13 15 = daJ

14 K =G+ T3
15 T3=F+.J
16 Z3 =15+ G
18 X3=T,+ D
19 T5=K+1
20 Y;=T5+D

Page 6 of 18

https://zenodo.org/records/18296047

https://zenodo.org/records/18296047

Projective Addition: Let P, = (x1,y1), P> = (22,y2) on a binary Edwards
curve E with the coefficients dy,dz. In projective coordinates, Py = (Xi,Y1,21)
where X1 = I]lel"l = lel-; and Pg = (XQ,YQ,ZQ) where Xg = EQZQ,YQ = YQZQ
Py = (X3,Y3, Z3) = P, + ps is computed as follows:

Algorithm: add” over Edwards Binary Curves
Input: (P, # O, P # 0,A.B)
ﬂut.p'llt. .P3 = {Xg.. 1/3_..23} = .P[- Pz

Operation
1 W, =X, + ¥
2 W, = X5 + ¥,
3 Th = X1+ Z1:
4 A=X1 XT:]:
5 =Y+ £:

G B = }‘rl kA T[:

T C=2Z % Zy

8 D=W,x Zy
9 Th=0CxC:

11 E = {fl x TQ:

11 I‘; = Eig et FFQ:
12 T4 = E![x zg:
13 Tp=T,+ Ty
14 Teg=W; =x(C:
15 H = 'I:",, = Tfji
16 T;' = Zl x
17 I = dl x T?:

18 Ty=Ax D:
19 U=FE+Ts:

20 Ty=8B=xD:

21 V=E+1Ty

22 S=U=xV:

23 Tw=Y:+ Zs:
24 Ty, = Ax Ty
25 Tw=I+4+T:
26 Tm = Xz x T[g:
27T Twu=H +Ta:
28 T[g =V = Zl:
29 Ty = Ty % Tys:
a0 T[;' =5 x Y[:
31 Xs=Tg+ Ty
32 Ta= Xo+ Za:
34 T[g =0 = T[a:
34 Tog =T+ Tig:
33 Tﬂl = Yg X Tm:
36 Tos = H +To1:
37 T23=U KZ[:
I8 TM = ng S Tg;;:
39 ng = S X Xl:
4ﬂ]:/3 = Tﬂd + Tzr]:

Page 7 of 18 https://zenodo.org/records/18296047

https://zenodo.org/records/18296047

2.4 Scalar Multiplication

Scalar multiplication consists of computing &P where P is a point on an elliptic curve
and k is a scalar. For this we can use Right-to-Left binary NAF multiplication.

Algorithm 1 Right-to-Left binary NAF multiplication using mixed [6]
Inpout: k, P = (X,Y. Z)

Output: [k]P

(X1, Y1, 2,) « O

(T1,T5,T3) «+ (X,Y, Z)

while £ > 1 do
if kp =1then wu+ 2—(k mod4)
k+—Fk—u

if u =1 then {XL,YI,ZI) — ECADD({X[.YLZL)(TITQ,TO,:I)

else {Xl,Yl,Zl) — ECADD{{XL,Yl,Z[),{Tl,—Tg,Tsj)
k « k/2
{Tl,Tz,Tg,T_el] — ECDBL(Tsz..Tg}
{Xl,,YJ_,ZJ_] 4—ECADD((X]_,YJ_..ZIJ,(Tl,TQ.ITg)}
Return: (X,,Y7,7)

2.5 Side Channel Atomicity

The algorithm presented above is vulnerable to a Simple Power Analysis (SPA) attack.
This vulnerability arises from the significant difference in power consumption between
point addition and point doubling operations. It is clear that, in each iteration of the
algorithm, a point addition is performed only if the corresponding bit of the key is
1. As a result, an attacker capable of experimentally distinguishing these variations
in power consumption could effectively reconstruct the key by observing just a single
power consumption trace.

A particularly effective countermeasure to protect elliptic curve-based protocols
against SPA attacks is the atomicity countermeasure. This technique involves rewriting
the addition and doubling formulas into an identical sequence of operations over the
field. By doing so, it prevents an attacker from distinguishing between a point addition
and a point doubling operation merely by analyzing the power consumption trace.

We propose several atomicity formulas specifically designed for Edwards curves,
offering enhanced protection against SPA attacks.

Table 1 illustrates the computations for ECADD((X>, Y2, Z3), (X1,Y1,Z;)) and
ECDBL(X,,Y], Z,) over Edwards curves. Each column corresponds to an atomic pat-
tern. The point addition is represented using two atomic patterns, while the point
doubling utilizes a single pattern. This implementation effectively mitigates vulnera-
bility to SPA attacks, as an attacker can no longer differentiate between the operations

Page 8 of 18 https://zenodo.org/records/18296047

https://zenodo.org/records/18296047

performed based solely on the power consumption trace observed during the execution
of the scalar multiplication.

Step | ECADD - part 1 A, | ECADD - part 2 4, | ECDBL -D
1 M=X4Y, N=X;+Y Ry + X141
3 B = A? * Rl<—X1?

4 * * R21 + Y72
5 C=X1Xs CF *

6 DZYLH * *

7 * * Ry + ¢ x 2,
o] * * R4{—R_,21
9 CD Yy KJ *

10 E=dxCD * *

11 * * Rs + Rs+ Ry
12 G=B+FE O=C+D R; + Ry + Rs
13 F=B-F * Ry« Ry — Ry
14 J=D-C * Ry + Ry — Rs
15 I =AF L=MN B3 + Rs x Rs
16 * H=L-0 Rs + Rs — Ry
17 * Xqg=1IH R, « Ry x Ry
18 * * X3=CXR1
19 * * Y3={3)<R2
20 * * Z-;:,=R3><R5

Table 1: ECADD and ECDBL operations written with the same
atomic pattern (* represents a dummy operation)

Table 2 illustrates the computations for ECADD((X5, Y52, Z3), (X,,Y1, Z,)) and
ECDBL(X,,Y1, Z,) overTwisted Edwards curves. Each column corresponds to an
atomic pattern. The point addition is represented using one atomic pattern, and the
point doubling utilizes a single pattern. This implementation effectively mitigates
vulnerability to SPA attacks, as an attacker can no longer differentiate between the
operations performed based solely on the power consumption trace observed during
the execution of the scalar multiplication

Step ECADD A, ECDBL - D
1 Xl > X2 *

2 * C = X3

3 aC' K= aC

4 dC *

5 D =Y,Y5 *

6 * D =Y?

7 A=Z175 *

8 B =A%

9 E =dCD *

10 F=B - F E - D

11 G=B+E F=FE+ D
12 H=X,4+1 X, + ¥

13 * B = (X1 +Y1)?
14 * H+ H

15 D — aC J=F 2H
16 Zg = F.G3 Zg = F..J

17 I =X, + Y5 *

18 J=TIH Ya = F.(E — D)
19 K=J-C D —-C

20 L=K-—-D B-C—-D
21 AF *

22 XNy = AFK Xy = (B —C — D).J
23 AG *

24 Ya = AG(D — aC') *

Table 2: ECADD and ECDBL operations written with the same
atomic pattern (* represents a dummy operation)

Page 9 of 18

https://zenodo.org/records/18296047

https://zenodo.org/records/18296047

Table 2 illustrates the computations for ECADD((X5, Y5, Z5), (X, Y1, Z1)) and
ECDBL(X,,Y;, Z,) over Edwards curves. Each column corresponds to an atomie pat-
tern. The point addition is represented using two atomic patterns, while the point
doubling utilizes a single pattern. This implementation effectively mitigates vulnera-
bility to SPA attacks, as an attacker can no longer differentiate between the operations
performed based solely on the power consumption trace observed during the execution
of the scalar multiplication.

Step | ECADD - part 1 A; | ECADD - part 2 A, | ECDBL - D
1 7 7 A= X2
2 * * B=A2
3 . * C =Yg
4 * * D ="
5 Wi=X1+1 Tw=Ya+ 2> Th=B+D
6 C=2175 T = AT *
7 T»=C? * E=2}
8 # % Th = E*?
9 T5 = Wh.C U.Zy H=AF
10 E=d,.7T5 I =d,.T7 F=dTy
11 I =4,.C Ti7=58Y I=CF
12 Wo=Xa+Y5 Tia=I+Tn J=H+1T
13 T3 = daWa Tos = 5.X T = ds.J
14 Th=X1+21 Twe=Xo+ 725 Ts=F+.J
15 A=X,.Tg T = B.T5 G = dz;’{il.Tn
16 =Y+ Ton=1T4+Ty Zy=T3+J
17 B=Y.T, Ty = X5.Tho *
18 D= I""’g.Zg TZI = Yz.TQU *
19 Ty = A.D Y, = 5.7, *
20 T_1 = d_].Zg T15 = 1"2’1 *
21 H=T,.T, Tys = U.Z, *
22 Il', — Tq + T.; T14 =H+ T]g K=G+ 'Tg
23 U=FE+Ty Tyy = H + Ty T,=K+H
24 Ty =8B.D Tig = T4 115 *
25 V=E+T, Xy =Ty + Tir Xy=Ty+D
26 S=UV Toy = Toe.T55 *
27 - Vs = Toy + Tos To=K+1
28 * * Y3=T;+B

Table 3: ECADD and ECDBL operations written with the same
atomic pattern (* represents a dummy operation)

2.6 Review of Big MAC Attack On Wierstrasss Elliptic Curve

The atomicity countermeasure in the implementation of scalar multiplication on
elliptic curves was initially introduced by Chevalier and later improved more
effectively by Giraud. This countermeasure was subsequently targeted for
enhancement by Danger et al. in the context of the BIG MAC attack on elliptic
curves.

The principle of the attack is as follows: Danger et al. focus on the atomicity
countermeasure with the aim of identifying multiplications that share common
operands. The attack is specifically designed to exploit this countermeasure, which
relies on rewriting addition and doubling operations within the framework of scalar
multiplication using the NAF representation.

Page 10 of 18 https://zenodo.org/records/18296047

https://zenodo.org/records/18296047

The atomicity countermeasure involves reformulating point addition and dou-
bling operations into a uniform sequence of operations. In this approach, addition
is represented using two distinct atomic patterns (Al and A2), while doubling is
represented with a single atomic pattern (D). The authors of the BIG MAC attack
observed that when the operation sequence follows the order A1, A2, D, exactly sixteen
multiplications share common operands, creating an exploitable vulnerability.

The attack is recursive in nature. By observing the execution of the scalar multi-
plication algorithm, the attacker focuses on detecting the initial operations that occur
during the implementation. This allows the attacker to derive the following informa-
tion: if the first three operations follow the order Al, A2, D, then kg = 1; otherwise,
ko = 0. This approach enables the attacker to progressively reconstruct the bits of the
secret key by exploiting this structural weakness.

two sets U; and U, are constructed as follow: initially, both U; and U, are empty.
A particular function is applied to the power traces of the multiplications that might
share a common operand. For each pair, one element is added to U;, and the other
to Us. If the Euclidean distance between [y and Us is low, this indicates that the
pairs indeed share a common operand. In this case, the three observed patterns are
Al, A2, D, and the attacker concludes that kg # 0. The method is then repeated with
the next three patterns to determine the value of k;. Conversely, if the Euclidean dis-
tance between U; and Us is high. Unlike the initial BIG MAC attack on elliptic curves,
which was limited to comparing two multiplications sharing a common operand, the
improved version proposed by Danger et al. extends the analysis to sixteen traces.
This approach has experimentally demonstrated that their improvement significantly
increases the effectiveness of the attack, thereby enhancing its ability to exploit the
vulnerabilities of the targeted implementations. We will apply this principle of com-
paring multiple multiplications in the next section to analyze the attack on Edwards
curves.

3 BIG MAC Attack On Edwards Curves

Let us recall that the countermeasures we are targeting here are those presented in the
previous section. We begin by considering Edwards curves defined over fields with
odd characteristic. Specifically, we focus on the scalar multiplication algorithm

applied to these curves

3.1 BIG MAC Attack On Edwards Curves Over Fields of Odd Characteristic

By observing the scalar multiplication algorithm, the point (X2, Y2, Z2) of A1, Az and
the point (X7, Y;, Z;) of D correspond to the same point R or —R. We summarize in
Table 4 the multiplications and squares that share a common operand. These
common operands are highlighted with a box, and identical indices are assigned to

common operands appearing in two multiplications.

Page 11 of 18 https://zenodo.org/records/18296047

https://zenodo.org/records/18296047

Step | ECADD - part 1 A, | ECADD - part 2 A, ECDBL - D
1 M=X+Ys N=X,+Y1 Ri+ X1+ Y
2 A= 21 x| 2], K =[A] . x[G], :

2
3 B=[A], * R, «[X,

‘)
4 * * R2 V1]
5 C:‘Xlx 8X5,10 *
6 D:Y—Jx% * *
7 * * Rg<—f:><1
8 * * R, «+ R?
9 [Cc,xD Vs K xJ *
10 E=dxCD * x
11 * * Ry« Rs+ Rj
12 G=B+F O=C+D Rs < R+ Ry
13 F=B-—F * Rg(—RL—RQ
14 J=D-C * Ry + Ry — Rj5
15 r=[A],,x[Fp.9 L=MxN R3 < Ry x Rj
16 * H=L-0 R3 < R3 — R;
17 Fl ., xlGl, Xy=1xH Ry + Ry x Ry
18 Zs=cx FG * Xs=cx Ry
19 * * Y:?:CXRQ
20 * * Zg=R3><R5

Table 4: operations written with the same operand)

We identify in Table 5 the common values shared between two multiplications,
specify which parttners share them, and indicate the steps where these common
values appear

numerotation | common operand | atomic partner sharing common operand
A;p line 2 and D line 7
A; line 5 and D line 3
A line 6 and D line 4
A line 3 and A, line 15
A1 line 15 and A5 line 5
Aj line 3 and A5 line 2
A line 15 and A; line 2
A; line 9 and As line 5
Aj line 15 and A3 line 17
Aj line 17 and Aj line 5
A; line 17 and A, line 2
Table 5: operations written with the same operand)

L O 00 =1 O U W ObD

—_
=]

QR TR SN

(==

By examining the scalar multiplication algorithm and considering the atomicity
countermeasure presented in this section, the possible operations of the three atomic
components during the first iteration of the scalar multiplication algorithm could be
(A1, A2,D) , (D, A1, Az). (D, D,D) or (D, D, Ay). The the first case apear if the first
bit of the secret key kg = 1 and the other case appear if ky = 0.

Page 12 of 18 https://zenodo.org/records/18296047

https://zenodo.org/records/18296047

To recover the secret key bit by bit, the principle of the BIG MAC attack is
applied. Since the attack is recursive, we first explain how the initial bit is obtained,
and subsequent bits are recovered in a similar manner. Recall that if the first three
components are (A;, Az, D), then the bit is 1.

The process unfolds as follows:

1. Trace Recovery: We first extract the power consumption traces corresponding to
the three initial components.

2. Operation Decomposition: Once these components are identified, we subdivide
the operations (additions, multiplications, squarings, and subtractions) appearing
in each component.

The BIG MAC attack assumes that the Hamming weight of a multiplication can
be deduced from the power consumption trace. Two sets, U/; and U, are constructed
as follows:

¢ Initialization: Both sets are initially empty.

® Trace Assignment: We identify the operations’ traces that are assumed to involve
common operands, given the components (A;, Az, D).

¢ Hamming Weight Assignment: Using the BIG MAC principle, the Hamming
weights of these multiplications are recovered. The weight of one operand is placed
in Uy, and the other in Us.
After retrieving the Hamming weights of the eleven multiplications that are expected
to share common operands, the Euclidean distance between U; and Us is calculated:

¢ Small Distance: If the distance is very small, it confirms the presence of com-

mon operands among the eleven multiplications. Thus, the sequence corresponds to
(A1, A2, D), and ko = 1.

® Large Distance: Otherwise, kg = 0.

3.2 BIG MAC Attack On Twisted Edwards Curve

By observing the scalar multiplication algorithm, the point (Xa, Y2, Z2) of A; and
the point (X7,Y7, Z;) of D correspond to the same point R or —R. We summarize in
Table 6 the multiplications and squares that share a common operand. These common
operands are highlighted with a box, and identical indices are assigned to common
operands appearing in two multiplications.

Page 13 of 18 https://zenodo.org/records/18296047

https://zenodo.org/records/18296047

Step ECADD A, ECDBL - D
1 C-'=X1>< X21 *
2

2 * C= Xll
3 a x C—‘u E =aC
4 dx|C}, *
D D=Y1>< Yg) *
6 * p=[vi|
T A=Zl>< Zgi *

v 2
8 B=.b’ H= Zl";
9 E=dC x D *
10 F=B-FE E—-D
11 G=B+E F=F+D
12 H=X+Y; Xi1+Y1
13 * B=(X; +Y)?
14 * H+H
15 D —aC J=F-2H
16 Z;;=>< Z:‘=xm
17 I=X2+Y2 *
18 J=1IxH Y;=|F| x (E-D)
19 K=J-C L=B-C
20 L=K-D K=L-D
21 (4], , x[F], *
22 X3 =AF x K Xs=Kx|J|,
24 | Y3 = AG x (D — aC) *

Table 6: ECADD and ECDBL operations written with the same

atomic pattern (* represents a dummy operation)

We identify in Table 7 the common values shared between two multiplications,
specify which parttners share them, and indicate the steps where these common
values appear

numerotation | common operand | atomic partner sharing common operand
1 X5 Aj line 1 and D line 2
2 Yo Aj line 5 and D line 6
3 Zo Aj line 7 and D line 8
4 A Aj line 8 and A; line 21
5 A Aj line 21 and A, line 23
6 A Aj line 8 and .4, line 23
7 F D line 16 and D line 18
8 G Aj line 16 and A, line 23
9 F Aj line 16 and A, line 21
10 J D line 16 and A line 22
11 C Aj line 3 and A, line 4

Table 7: operations written with the same operand)

Page 14 of 18 https://zenodo.org/records/18296047

https://zenodo.org/records/18296047

By examining the scalar multiplication algorithm and considering the atomicity
countermeasure presented in this section, the possible operations of the two atomic
components during the first iteration of the scalar multiplication algorithm could be
(A1,D), (D, A;). (D,D) or . The the first case apear if the first bit of the secret key
kyp = 1 and the other case appear if ky = 0.

To recover the secret key bit by bit, the principle of the BIG MAC attack is
applied. Since the attack is recursive, we first explain how the initial bit is obtained,
and subsequent bits are recovered in a similar manner. Recall that if the first three
components are (A;, D), then the bit is 1.

The process unfolds as follows:

1. Trace Recovery: We first extract the power consumption traces corresponding to
the two initial components.

2. Operation Decomposition: Once these components are identified, we subdivide
the operations (additions, multiplications, squarings, and subtractions) appearing
in each component.

The BIG MAC attack assumes that the Hamming weight of a multiplication can
be deduced from the power consumption trace. Two sets, U; and Us, are constructed
as follows:

¢ Initialization: Both sets are initially empty.

* Trace Assignment: We identify the operations’ traces that are assumed to involve
common operands, given the components (A;, D).

®* Hamming Weight Assignment: Using the BIG MAC principle, the Hamming
weights of these multiplications are recovered. The weight of one operand is placed
in U/, and the other in Us,.

After retrieving the Hamming weights of the eleven multiplications that are expected
to share common operands, the Euclidean distance between U, and Us is calculated:
® Small Distance: If the distance is very small, it confirms the presence of com-
mon operands among the eleven multiplications. Thus, the sequence corresponds to
(«4.1,?)), and k[} = 1.
® Large Distance: Otherwise, ky = 0.

3.3 BIG MAC Attack On Binary Edwards Curve

By observing the scalar multiplication algorithm, the point (X5, Y5, Zs) of A;, A; and
the point (X;,Y1. Z;) of D correspond to the same point R or —R. We summarize in
Table 8 the multiplications and squares that share a common operand. These common
operands are highlighted with a box, and identical indices are assigned to common
operands appearing in two multiplications. By examining the scalar multiplication
algorithm and considering the atomicity countermeasure presented in this section,
the possible operations of the three atomic components during the first iteration of
the scalar multiplication algorithm could be (A, 42,D) , (D, A1, A2). (D,D,D) or
(D, D, A1). The the first case apear if the first bit of the secret key kg = 1 and the
other case appear if ky = 0.

To recover the secret key bit by bit, the principle of the BIG MAC attack is
applied. Since the attack is recursive, we first explain how the initial bit is obtained,
and subsequent bits are recovered in a similar manner. Recall that if the first three
components are (A;, As, D), then the bit is 1.

The process unfolds as follows:

Page 15 of 18 https://zenodo.org/records/18296047

https://zenodo.org/records/18296047

1. Trace Recovery: We first extract the power consumption traces corresponding to
the three initial components.

2. Operation Decomposition: Once these components are identified, we subdivide
the operations (additions, multiplications, squarings, and subtractions) appearing
in each component.

The BIG MAC attack assumes that the Hamming weight of a multiplication can
be deduced from the power consumption trace. Two sets, U and Us, are constructed
as follows:

® TInitialization: Both sets are initially empty.

® Trace Assignment: We identify the operations’ traces that are assumed to involve
common operands, given the components (Ay,.As, D).

®* Hamming Weight Assignment: Using the BIG MAC principle, the Hamming
weights of these multiplications are recovered. The weight of one operand is placed
in /1, and the other in Us.
After retrieving the Hamming weights of the thirty-eight multiplications that are
expected to share common operands, the Euclidean distance between U; and Us is
calculated:

¢ Small Distance: If the distance is very small, it confirms the presence of com-
mon operands among the eleven multiplications. Thus, the sequence corresponds to
(A1, A3, D), and ky = 1.

& Large Distance: Otherwise, kg = 0.

Step ECADD - part 1 .4, ECADD - part 2 As ECDBL - D
1 + *
9 * *
3 #* #*
4 * *
5 W, =X+, Tig=Ys+ 23
6 C= 7_2&.32_33 * %_6_22 Tu = 11 * Tho
7 Ty = 1:2 * E=Z 22,23.24
8 * * Ty = 5_35
9 T = Wq x 1_3 * H = 4 * 6.3?
10 E=d xTs I=dy x Ty F=d1><n
1 Tr = 14:15:27:29 = _3 Tir = 19.20 ® I= 8 5,37
12 Wa =Xo+ Y5 Tiao=T+Tn J=H+1
| T, Tin =[S0 <[X2, T~y
14 To=X1+ 24 Tis = Xo + Zo Ty=F+.J
15 1'1= XTln T1Q=IE\IZXT13 G=dg,r’ldl ><13
16 TIZ}PI'{'ZI Tgn:I+T15] Z_-';:Iq'{'.f
18 D= 1. x 57,23 T = 5 x Tao -
19 Ts = 11 s m Y; = 151_21 * :3_29_30_31 :
— o~ . — [*
20 Ty =dy x .7=24 Tis 13 * 14.16;3{],32
21 H = 2 2 Ta Iy = 17 s 15:15:31:33)
22 Ts =T33+ T4 Tia=H+Tis K=G+T:
23 U=FE+Ty Too = H + To Ty=K+H
24 Tg = @12 h 4 1[} Tlﬁ = T1,1 b4 Tl.‘i *
25 V=FE+Ty Xy =Tig + Th7 Xg=Ty + D
26 s = 1? x 13 Toy = Toe x Toy *
27 * Yy = Toy + Tos Ty =K +1
28 * * Y3=T5+8

Table 8: ECADD and ECDBL operations written with the same
atomic pattern (* represents a dummy operation)

Page 16 of 18 https://zenodo.org/records/18296047

https://zenodo.org/records/18296047

We identify in Table 9 the common values shared between two multiplications,
specify which parttners share them, and indicate the steps where these common values

appear
numerotation | common operand | atomic partner sharing common operand
1 O Ajp line 7 and A, line 9
2 [A; line 7 and .4, line 11
3 , Ajp line 9 and 4, line 11
4 Wy A; line 13 and A4, line 18
5 Zy A; line 6 and A, line 18
6 P A; line 6 and .4, line 20
7 P Aj line 18 and .47 line 20
B X, A line 15 and As line 13
9 ¥ Ay line 17 and A, line 11
10 D A line 19 and A, line 24
11 A A; line 19 and A4 line 6
12 B Ajp line 15 and A4 line 24
13 Th T line 10 and T line 15
14 Z A; line 11 and A4, line 20
15 1 Aj line 11 and As line 21
16 1 Aa line 20 and As line 21
17 1 Ay line 26 and As line 21
1K8 Vv Ay line 26 and A, line 20
19 s As line 11 and A, line 19
20 5 Aa line 11 and .42 line 13
21 S Az line 13 and A2 line 19
22 Za Aj line 6 and D line 7
23 Zy Ay line 18 and D line 7
24 Zq Ay line 24 and D line 7
25 ¥a Az line 18 and D line 3
26 X3 Az line 17 and D line 1
27 Z1 A line 6 and 4 line 11
28 Z A line 6 and A, line 19
29 1 A line 11 and .42 line 19
30 2 Az line 19 and A2 line 20
31 £ As line 19 and .4s line 21
32 Z A; line 6 and A5 line 20
33 Z A; line 6 and A, line 21
34 A D line 2 and D line 9
35 E D line 8 and D line 11
36 E D line 8 and D line 9
a7 E D line 9 and D line 11
38 (o D line 4 and D line 11

Table 9: operations written with the same operand)

In this paper, we focused on the BIG MAC attack on Edwards curves. First, we
proposed atomicity formulas for Edwards curves, Twisted Edwards curves, and
binary Edwards curves. Using the principles of the BIG MAC attack introduced by
Danger et al., we identified eleven multiplications and squarings with common
operands in our atomicity formulas for Edwards curves, eleven multiplications and
squarings with common operands for Twisted Edwards curves, and thirty-eight
multiplications and doublings with common operands for binary Edwards curves. We
explained how an attacker could exploit these common operands to recursively
recover the bits of the secret key.

We would like to apply this attack to hyperelliptic curves.

Page 17 of 18 https://zenodo.org/records/18296047

https://zenodo.org/records/18296047

References

1. Bernstein, D. J., Birkner, P., Joye, M., Lange, T., & Peters, C. (2008). Twisted
Edwards curves. In S. Vaudenay (Ed.), Progress in cryptology — AFRICACRYPT
2008 (pp. 389—-405). Springer. https://doi.org/10.1007/978-3-540-68164-9 26

2. Danger, J.-L., Guilley, S., Hoogvorst, P., Murdica, C., & Naccache, D. (2016).
Improving the Big Mac attack on elliptic curve cryptography. In P. Y. A. Ryan, D.
Naccache, & J.-J. Quisquater (Eds.), The new codebreakers: Essays dedicated to
David Kahn on the occasion of his 85th birthday (pp. 374-386). Springer.
https://doi.org/10.1007/978-3-662-49301-4 24

3. Chevallier-Mames, B., Ciet, M., & Joye, M. (2004). Low-cost solutions for
preventing simple side-channel analysis: Side-channel atomicity. [EEE
Transactions on Computers, 53(6), 760—768. https://doi.org/10.1109/TC.2004.13

4. Bauer, A., Jaulmes, E., Prouff, E., Reinhard, J. R., & Wild, J. (2019). Horizontal
collision correlation attack on elliptic curves. Cryptology ePrint Archive.
https://eprint.iacr.org/2019/523

5. Takemura, Y., Hakuta, K., & Shinohara, N. (2020). ECC atomic block with NAF
against strong side-channel attacks on binary curves. International Journal of
Networking and Computing, 10(2), 277-292. https://doi.org/10.15017/4100465

6. Joye, M. (2008). Fast point multiplication on elliptic curves without
precomputation. In J. von zur Gathen, J. L. Imafia, & C. K. Kog¢ (Eds.), Arithmetic
of finite fields: 2nd International Workshop, WAIFI 2008 (pp. 36—46). Springer.
https://doi.org/10.1007/978-3-540-69499-1 4

7. Giraud, C., & Verneuil, V. (2010). Atomicity improvement for elliptic curve scalar
multiplication. In D. Gollmann, J.-L. Lanet, & J. Iguchi-Cartigny (Eds.), Smart
card research and advanced application: 9th IFIP WG 8.8/11.2 International
Conference, CARDIS 2010 (pp. 80—101). Springer. https://doi.org/10.1007/978-3-
642-12510-2 7

8. Walter, C. D. (2001). Sliding windows succumbs to Big Mac attack. In C. K. Kog,
D. Naccache, & C. Paar (Eds.), Cryptographic hardware and embedded systems —
CHES 2001 (pp. 286-299). Springer. https://doi.org/10.1007/3-540-44709-1 24

Page 18 of 18 https://zenodo.org/records/18296047

https://zenodo.org/records/18296047
https://doi.org/10.1007/978-3-540-68164-9_26
https://www.google.com/search?q=https://doi.org/10.1007/978-3-662-49301-4_24
https://doi.org/10.1109/TC.2004.13
https://eprint.iacr.org/2019/523
https://www.google.com/search?q=https://doi.org/10.15017/4100465
https://www.google.com/search?q=https://doi.org/10.1007/978-3-540-69499-1_4
https://www.google.com/search?q=https://doi.org/10.1007/978-3-642-12510-2_7
https://www.google.com/search?q=https://doi.org/10.1007/978-3-642-12510-2_7
https://doi.org/10.1007/3-540-44709-1_24

