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ABSTRACT: In 2001, Walter introduced the BIG MAC attack on 

RSA systems. This hori- zontal collision attack exploits the 

detection of common operands between two multiplications. It 

is highly effective, as a single power consumption trace is 

suffi- cient to recover all the bits of the secret exponent. 

Initially, the BIG MAC attack was not applicable to 

cryptosystems based on elliptic curves. It was only in 2013 that 

Bauer et al. enhanced the attack and proposed a version 

adapted to ellip- tic curves. This new approach specifically 

targets the atomicity countermeasure and relies on identifying 

common operands between two multiplications within the 

addition and doubling algorithms for elliptic curve points. In 

2016, Danger et al. further refined the attack by significantly 

improving its efficiency: instead of comparing only two 

multiplications, their method compares sixteen, thereby 

achieving much better results. In this work, we first analyze the 

atomicity coun- termeasure applied to Edwards curves, 

Twisted Edwards curves, and Edwards curves defined over 

binary fields. Then, we study the BIG MAC attack on these  
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curves, focusing on its effectiveness against atomicity-based countermeasures. 

Keywords: Elliptic Curve Cryptography, Big Mac Attack, Side Channel Atomicity, 

Edwards curves.  

1. Introduction 

Point scalar multiplication is a fundamental component of elliptic curve 

cryptography. This cryptographic approach is increasingly popular and widely 

recommended due to its key advantage: the use of very small key sizes. However, 

cryptographic protocols based on elliptic curves are vulnerable to side-channel 

attacks. These attacks exploit information such as electromagnetic emissions, 

variations in current consumption, or power usage during the execution of scalar 

multiplication algorithms, aiming to extract details about the secret key. 

Among side-channel attacks, we can notably mention SPA (Simple Power Anal- 

ysis). This attack exploits the significant differences in power consumption between 

point addition and point doubling during the execution of scalar multiplication algo- 

rithms. By observing a single power consumption trace, the attacker can reconstruct 

the sequence of additions and doublings performed during scalar multiplication, 

which may allow them to recover the secret key. Several countermeasures have been 

proposed to mitigate this attack, including unified formulas and atomicity formulas   

[[7], [3]]. These approaches involve rewriting point addition and doubling operations 

as identi- cal sequences of addition and multiplication operations over the field. This 

prevents distinguishing between addition and doubling operations solely by 

observing power consumption traces. 

However, even with the use of atomicity, elliptic curves remain vulnerable to a Side- 

Channel Attack that exploits this countermeasure: the BIG MAC attack. Introduced 

in 2001 by Walter for RSA [8], this attack involves observing the power consumption 

traces of two multiplications and detecting whether these multiplications share a 

com- mon operand. Initially, this attack was not applicable to elliptic curves.In 2013, 

Bauer et al. successfully enhanced the BIG MAC attack and applied it to elliptic 

curves [4]. They targeted the atomicity countermeasure and demonstrated that if an 

attacker can identify multiplications sharing common operands, they can recover the 
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secret key used in point scalar multiplication. In 2016, J.-L. Danger et al. further 

refined the attack, focusing on comparing 16 multiplications instead of just 2 [2]. 

Yusuke Takemura et al. proposed a new atomicity formula effective for binary 

Weierstrass elliptic curves and showed the vulnerability of this countermeasure to the 

BIG MAC attack [5]. 

In this work, we first analyze the atomicity countermeasure applied to Edwards 

curves, Twisted Edwards curves, and Edwards curves defined over binary fields. 

Then, we study the BIG MAC attack on these curves, focusing on its effectiveness 

against atomicity-based countermeasures. The rest of paper is organised as follows: 

In Section 2, we review the properties of Edwards curves, focusing specifically on 

the addition formulas in affine and projective coordinates. We propose rewriting this 

addition and pointing out doubling formulas as uniform sequences of scalar 

operations to implement the atomicity countermeasure. We also revisit the principle 

of the BIG MAC attack on elliptic curves. In Section 3, we analyze the BIG MAC 

attack on Edwards curves. In Section 4, we provide countermeasures against the BIG 

MAC attack and conclude with a summary. 

2 Elliptic Curves Cryptography 

2.1 Edwards Curve 

Lep p > 3 be a prime number and K = Fp be a field. The Edwards form of an elliptic 

curve over a field Fp is given by the equation E : x2 + y2 = c2(1 + x2y2), where c, d 

Fp. The set of points satisfying the equation ofE form an abelian group, the neutral 

element of this is the point (0, c). We will denoted that group as E(K). Let P1 = (x1, 

y1) and P2 = (x2, y2) be two points of E(K), P1 + P2 is computed as follows: 

  x1y2 + y1x2    y1y2 − x1x2  

P + P  = ( ; ) 

1 2 
c(1 + dx1x2y1y2) c(1 − dx1x2y1y2) 

The above addition formulae contain finite field inversions which are costly and can 

be avoided by changing the affine coordinates to other systems such as projective 

coordinates. 

https://zenodo.org/records/18296047


Page 4 of 18                                                                https://zenodo.org/records/18296047 

Addition In Projective Coordinates: Let P1 = (x1, y1) and P2 = (x2, y2) be two points 

of E(K), in projective coordinates, P1 = (X1; Y1; Z1), P2 = (X2; Y2; Z2), where X1 = 

x1Z1, Y1 = y1Z1, X1 = x2Z2, Y2 = y2Z2, Z1, Z2 ∈K. (X3; Y3; Z3) = 

P1 + P2 is computed as follow: 

A = Z1Z2, B = A2, C = X1X2, D = Y1Y2.  

E = dCD, F = B − E, G = B + E, 

X3 = AF ((X1 + Y1)(X2 + Y2) − C − D) 

Y3 = AG(D − C) 

, Z3 = cFG 

Doubling In Projective Coordinates: Let P1 = (X1; Y1; Z1) be a point in projective 

coordinates over the curve E. (X3; Y3; Z3) = 2P1 is computed as follow: 

B = (X1 + Y1)2, C = X2, D = Y2 
        1                   1 

E = C + D, H(cZ1)2, J = E − 2H X3 = c(B − E)J 

Y3 = cE(C − D) 

Z3 = EJ 

2.2 Twisted Edwards curve 

The Twisted Edwards form of an elliptic curve over K is described as: 

ET : ax2 + y2 = 1 + dx2y2 (a, d ∈K, ad(a − d)≠ 0) 

The neutral element is the affine point (0, 1). The inverse of a point (x1,√y1) is the 

point (x1, y1). The point (0,-1) is a point of order 2 and the point (+1/a, 0) is a 

point of order 4. 
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The set of points P = (x, y) satisfy ET, is denoted by ET (K), which forms an abelian 

group. Let P1 = (x1, y1) and P2 = (x2, y2) be two points on ET (K), the sum P3 = P1 + 

P2 = (x3, y3) can be computed as follows: 

  (x , y ) = ( 
 x1y2 + x2y1  

, 
 y1y2 − ax1x2  ) 

3  3 
1 + dx1x2y1y2  1 − dx1x2y1y2 

Addition point on Twisted Edwards curve is unified, that means we can use the same 

addition formulas for point doubling. On Twisted Edwards curve model, there are 

three different coordinates: projective coordinates,inverted coordinates, extended 

coor- dinates. In the next table, we present these different coordinates and give the 

number of different addition formulas and doubling in EFD [1]. Addition In 

Projective Coordinates: 

Given a pair of points (X1 : Y1 : Z1) and (X2 : Y2 : Z2), their sum (X3 : Y3 : 

Z3) A = Z1 · Z2, B = A2, C = X1 · X2, D = Y1 · Y2, 

E = dC · D, F = B − E, G = B + E, 

X3 = A · F · ((X1 + Y1) · (X2 + Y2) − C − D) , 
Y3 = A · G · (D − aC), Z3 = F · G.  

Doubling In Projective Coordinates: 

Given a point (X1: Y1: Z1), its doubling point (X3: Y3: Z3) is computed as: 

B = (X1 + Y1)2,   C = X2, D = Y 2, 
                                                         1                       1 

E = aC, F = E + D, H = Z1
2,      (2) 

J = F − 2H, 

X3 = (B − C − D) · J, 

Y3 = F · (E − D), Z3 = F · J. 

2.3 Edwards curve over Binary Fields 

We recall that an Edwards elliptic curve over binary fields is defined as follows: 

E : d1(x + y) + d2(x2 + y2) = xy + xy(x + y) + x2y2 

where d1, d2 ∈ K = F2m, where m is a positive integer. 

 

(1) 
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2.6 Review of Big MAC Attack On Wierstrasss Elliptic Curve 

The atomicity countermeasure in the implementation of scalar multiplication on 

elliptic curves was initially introduced by Chevalier and later improved more 

effectively by Giraud. This countermeasure was subsequently targeted for 

enhancement by Danger et al. in the context of the BIG MAC attack on elliptic 

curves. 

The principle of the attack is as follows: Danger et al. focus on the atomicity 

countermeasure with the aim of identifying multiplications that share common 

operands. The attack is specifically designed to exploit this countermeasure, which 

relies on rewriting addition and doubling operations within the framework of scalar 

multiplication using the NAF representation. 
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3 BIG MAC Attack On Edwards Curves 

Let us recall that the countermeasures we are targeting here are those presented in the 

previous section. We begin by considering Edwards curves defined over fields with 

odd characteristic. Specifically, we focus on the scalar multiplication algorithm 

applied to these curves 

3.1 BIG MAC Attack On Edwards Curves Over Fields of Odd Characteristic 

By observing the scalar multiplication algorithm, the point (X2, Y2, Z2) of A1, A2 and 

the point (X1, Y1, Z1) of D correspond to the same point R or −R. We summarize in 

Table 4 the multiplications and squares that share a common operand. These 

common operands are highlighted with a box, and identical indices are assigned to 

common operands appearing in two multiplications. 
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We identify in Table 5 the common values shared between two multiplications, 

specify which parttners share them, and indicate the steps where these common 

values appear 

 

 

 

 

 

 

 

 

 

https://zenodo.org/records/18296047


Page 13 of 18                                                                https://zenodo.org/records/18296047 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

https://zenodo.org/records/18296047


Page 14 of 18                                                                https://zenodo.org/records/18296047 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We identify in Table 7 the common values shared between two multiplications, 

specify which parttners share them, and indicate the steps where these common 

values appear 
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In this paper, we focused on the BIG MAC attack on Edwards curves. First, we 

proposed atomicity formulas for Edwards curves, Twisted Edwards curves, and 

binary Edwards curves. Using the principles of the BIG MAC attack introduced by 

Danger et al., we identified eleven multiplications and squarings with common 

operands in our atomicity formulas for Edwards curves, eleven multiplications and 

squarings with common operands for Twisted Edwards curves, and thirty-eight 

multiplications and doublings with common operands for binary Edwards curves. We 

explained how an attacker could exploit these common operands to recursively 

recover the bits of the secret key. 

We would like to apply this attack to hyperelliptic curves. 
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